Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1979 Oct 1;83(1):126–142. doi: 10.1083/jcb.83.1.126

Transformation and motility of human platelets: details of the shape change and release reaction observed by optical and electron microscopy

PMCID: PMC2110449  PMID: 511936

Abstract

Blood platelets from 10 normal human subjects have been examined with a sensitive differential interference contrast (DIC) microscope. The entire transformation process during adhesion to glass is clearly visible and has been recorded cinematographically, including the disk to sphere change of shape, the formation of sessile protuberances, the extension and retraction of pseudopodia, and the spreading, ruffling, and occasional regression of the hyalomere. The exocytosis of intact dense bodies can be observed either by DIC microscopy, or by epifluorescence microscopy in platelets stained with mepacrine. Details of fluorescent flashes indicate that the dense bodies usually release their contents extracellularly, may do so intracytoplasmically under the influence of strong, short wavelength light on some preparations of mepacrine-stained platelets. The release of one or more dense bodies leaves a crater of variable size on the upper surface of the granulomere. Such craters represent the surface component of the open canalicular system and their formation and disappearance can be directly observed. Because these techniques permit quantitation of several parameters of motility which are not readily observable by other techniques, it is suggested that high extinction DIC microscope examination may become a rapid and useful method of studying congenital and acquired platelet disorders. Many features of platelet transformation have been confirmed and extended by scanning electron micrographs. These can in turn be interpreted by reference to time- lapse films of living platelets.

Full Text

The Full Text of this article is available as a PDF (1.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen N. S., Allen R. D. Cytoplasmic streaming in green plants. Annu Rev Biophys Bioeng. 1978;7:497–526. doi: 10.1146/annurev.bb.07.060178.002433. [DOI] [PubMed] [Google Scholar]
  2. Allen R. D., David G. B., Nomarski G. The zeiss-Nomarski differential interference equipment for transmitted-light microscopy. Z Wiss Mikrosk. 1969 Nov;69(4):193–221. [PubMed] [Google Scholar]
  3. Barnhart M. I., Riddle J. M. Action of fibrinolytic products on platelets: an electron microscope study. Thromb Diath Haemorrh Suppl. 1967;26:87–105. [PubMed] [Google Scholar]
  4. Barnhart M. I., Walsh R. T., Robinson J. A. A three-dimensional view of platelet responses to chemical stimuli. Ann N Y Acad Sci. 1972 Oct 27;201:360–390. doi: 10.1111/j.1749-6632.1972.tb16311.x. [DOI] [PubMed] [Google Scholar]
  5. Best C. H., Cowan C., Maclean D. L. Heparin and the formation of white thrombi. J Physiol. 1938 Feb 16;92(1):20–31. doi: 10.1113/jphysiol.1938.sp003580. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Born G. V. Observations on the change in shape of blood platelets brought about by adenosine diphosphate. J Physiol. 1970 Aug;209(2):487–511. doi: 10.1113/jphysiol.1970.sp009176. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Boyle Kay M. M., Fudenberg H. H. Inhibition and reversal of platelet activation by cytochalasin B or colcemid. Nature. 1973 Aug 3;244(5414):288–289. doi: 10.1038/244288a0. [DOI] [PubMed] [Google Scholar]
  8. Breddin K. In-vitro-Methoden zur Beurteilung der Plättchenfunktion. Blut. 1968 Nov;18(2):84–89. doi: 10.1007/BF01632412. [DOI] [PubMed] [Google Scholar]
  9. Buckley I. K., Porter K. R. Electron microscopy of critical point dried whole cultured cells. J Microsc. 1975 Jul;104(2):107–120. doi: 10.1111/j.1365-2818.1975.tb04010.x. [DOI] [PubMed] [Google Scholar]
  10. Buckley I. K., Raju T. R. Form and distribution of actin and myosin in non-muscle cells: a study using cultured chick embryo fibroblasts. J Microsc. 1976 Jul;107(2):129–149. doi: 10.1111/j.1365-2818.1976.tb02431.x. [DOI] [PubMed] [Google Scholar]
  11. Cooper H. A., Mason R. G., Brinkhous K. M. The platelet: membrane and surface reactions. Annu Rev Physiol. 1976;38:501–535. doi: 10.1146/annurev.ph.38.030176.002441. [DOI] [PubMed] [Google Scholar]
  12. Costa J. L. In situ observation of dense-body release from hydrated human platelets. Biophys J. 1977 Sep;19(3):307–313. doi: 10.1016/S0006-3495(77)85590-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. David-Ferreira J. F. The blood platelet: electron microscopic studies. Int Rev Cytol. 1964;17:99–148. doi: 10.1016/s0074-7696(08)60406-4. [DOI] [PubMed] [Google Scholar]
  14. DiPasquale A., Bell P. B., Jr The upper cell surface: its inability to support active cell movement in culture. J Cell Biol. 1974 Jul;62(1):198–214. doi: 10.1083/jcb.62.1.198. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Eckert B. S., Warren R. H., Rubin R. W. Structural and biochemical aspects of cell motility in amebas of Dictyostelium discoideum. J Cell Biol. 1977 Feb;72(2):339–350. doi: 10.1083/jcb.72.2.339. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. French J. E. Blood platelets: morphological studies on their properties and life cycle. Br J Haematol. 1967 Jul;13(4):595–602. doi: 10.1111/j.1365-2141.1967.tb00767.x. [DOI] [PubMed] [Google Scholar]
  17. Gerrard J. M., White J. G. The structure and function of platelets, with emphasis on their contractile nature. Pathobiol Annu. 1976;6:31–59. [PubMed] [Google Scholar]
  18. Hard R., Allen R. D. Behaviour of kinetochore fibres in Haemanthus katherinae during anaphase movements of chromosomes. J Cell Sci. 1977;27:47–56. doi: 10.1242/jcs.27.1.47. [DOI] [PubMed] [Google Scholar]
  19. Hattori A., Tokunaga J., Fujita T., Matsuoka M. Scanning electron microscopic observations on human blood platelets and their alterations induced by thrombin. Arch Histol Jpn. 1969 Nov;31(1):37–54. doi: 10.1679/aohc1950.31.37. [DOI] [PubMed] [Google Scholar]
  20. Larrimer N. R., Balcerzak S. P., Metz E. N., Lee R. E. Surface structure of normal human platelets. Am J Med Sci. 1970 Apr;259(4):242–256. doi: 10.1097/00000441-197004000-00002. [DOI] [PubMed] [Google Scholar]
  21. Lorez H. P., Da Prada M., Pletscher A. Flashing phenomenon in blood platelets stained with fluorescent basic drugs. Experientia. 1975 May 15;31(5):593–595. doi: 10.1007/BF01932478. [DOI] [PubMed] [Google Scholar]
  22. Lorez H. P., Da Prada M., Rendu F., Pletscher A. Mepacrine, a tool for investigating the 5-hydroxytryptamine organelles of blood platelets by fluorescence microscopy. J Lab Clin Med. 1977 Jan;89(1):200–206. [PubMed] [Google Scholar]
  23. MARX R., IBROM H., STANISLAWSKI F. [The staining of spread-out thrombocytes adherent to film and glass. A procedure for improved light-microscopic thrombocyte analysis]. Blut. 1960 Dec;6:335–338. doi: 10.1007/BF01631231. [DOI] [PubMed] [Google Scholar]
  24. Markosian A. A., Kozlov V. K. Viazkii metamorfoz trombotsitov. Fiziol Zh SSSR Im I M Sechenova. 1973 Feb;59(2):281–287. [PubMed] [Google Scholar]
  25. Murphy M. J., Jr The shape of blood platelets. An application of lyophilisation and scanning electron microscopy. Thromb Diath Haemorrh. 1972 Oct 31;28(2):237–243. [PubMed] [Google Scholar]
  26. Robb-Smith A. H. Why the platelets were discovered. Br J Haematol. 1967 Jul;13(4):618–637. doi: 10.1111/j.1365-2141.1967.tb00769.x. [DOI] [PubMed] [Google Scholar]
  27. Ruzicka F., Fierkens D. Thrombozytenausbreitungstest im Elektronenmikroskop. Thromb Diath Haemorrh. 1971;25(1):1–12. [PubMed] [Google Scholar]
  28. Scarborough D. E., Mason R. G., Dalldorf F. G., Brinkhous K. M. Morphologic manifestations of blood-solid interfacial reactions. A scanning and transmission electron microscopic study. Lab Invest. 1969 Feb;20(2):164–169. [PubMed] [Google Scholar]
  29. Schatz I. J., Riddle J. M. Platelet surface activation and aggregation in myocardial infarction--electron microscopic observations. Adv Cardiol. 1970;4:143–160. doi: 10.1159/000387612. [DOI] [PubMed] [Google Scholar]
  30. Sixma J. J., Molenaar I. Microtubules and microfibrils in human platelets. Thromb Diath Haemorrh. 1966 Jul 31;16(1):153–162. [PubMed] [Google Scholar]
  31. Skjorten F. Studies on the ultrastructure of pseudopod formation in human blood platelets. I. Effect of temperature, period of incubation, anticoagulants and mechanical forces. Scand J Haematol. 1968;5(6):401–414. [PubMed] [Google Scholar]
  32. Trinkaus J. P., Betchaku T., Krulikowski L. S. Local inhibition of ruffling during contact inhibition of cell movement. Exp Cell Res. 1971 Feb;64(2):291–300. doi: 10.1016/0014-4827(71)90079-6. [DOI] [PubMed] [Google Scholar]
  33. Weiss L. Biophysical aspects of initial cell interactions with solid surfaces. Fed Proc. 1971 Sep-Oct;30(5):1649–1657. [PubMed] [Google Scholar]
  34. White J. G., Gerrard J. M. Interaction of microtubules and microfilaments in platelet contractile physiology. Methods Achiev Exp Pathol. 1979;9:1–39. [PubMed] [Google Scholar]
  35. White J. G., Krivit W. An ultrastructural basis for the shape changes induced in platelets by chilling. Blood. 1967 Nov;30(5):625–635. [PubMed] [Google Scholar]
  36. White J. G., Krivit W. Changes in platelet microtubules and granules during early clot development. Thromb Diath Haemorrh Suppl. 1967;26:29–42. [PubMed] [Google Scholar]
  37. White J. G., Krumwiede M. Influence of cytochalasin B on the shape change induced in platelets by cold. Blood. 1973 Jun;41(6):823–832. [PubMed] [Google Scholar]
  38. Zucker-Franklin D., Grusky G. The actin and myosin filaments of human and bovine blood platelets. J Clin Invest. 1972 Feb;51(2):419–430. doi: 10.1172/JCI106828. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES