Abstract
Asymmetrical bending waves can be obtained by reactivating demembranated sea urchin spermatozoa at high Ca2+ concentrations. Moving-film flash photography shows that asymmetrical flagellar bending waves are associated with premature termination of the growth of the bends in one direction (the reverse bends) while the bends in the opposite direction (the principal bends) grow for one full beat cycle, and with unequal rates of growth of principal and reverse bends. The relative proportions of these two components of asymmetry are highly variable. The increased angle in the principal bend is compensated by a decreased angle in the reverse bend, so that there is no change in mean bend angle; the wavelength and beat frequency are also independent of the degree of asymmetry. This new information is still insufficient to identify a particular mechanism for Ca2+-induced asymmetry. When a developing bend stops growing before initiation of growth of a new bend in the same direction, a modification of the sliding between tubules in the distal portion of the flagellum is required. This modification can be described as a superposition of synchronous sliding on the metachronous sliding associated with propagating bending waves. Synchronous sliding is particularly evident in highly asymmetrical flagella, but is probably not the cause of asymmetry. The control of metachronous sliding appears to be unaffected by the superposition of synchronous sliding.
Full Text
The Full Text of this article is available as a PDF (972.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Amos W. B. Contraction and calcium binding in the vorticellid ciliates. Soc Gen Physiol Ser. 1975;30:411–436. [PubMed] [Google Scholar]
- Brokaw C. J. Bending moments in free-swimming flagella. J Exp Biol. 1970 Oct;53(2):445–464. doi: 10.1242/jeb.53.2.445. [DOI] [PubMed] [Google Scholar]
- Brokaw C. J. CO2-inhibition of the amplitude of bending of triton-demembranated sea urcin sperm flagella. J Exp Biol. 1977 Dec;71:229–240. doi: 10.1242/jeb.71.1.229. [DOI] [PubMed] [Google Scholar]
- Brokaw C. J. Computer simulation of flagellar movement. I. Demonstration of stable bend propagation and bend initiation by the sliding filament model. Biophys J. 1972 May;12(5):564–586. doi: 10.1016/S0006-3495(72)86104-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brokaw C. J. Effects of viscosity and ATP concentration on the movement of reactivated sea-urchin sperm flagella. J Exp Biol. 1975 Jun;62(3):701–719. doi: 10.1242/jeb.62.3.701. [DOI] [PubMed] [Google Scholar]
- Brokaw C. J., Josslin R., Bobrow L. Calcium ion regulation of flagellar beat symmetry in reactivated sea urchin spermatozoa. Biochem Biophys Res Commun. 1974 Jun 4;58(3):795–800. doi: 10.1016/s0006-291x(74)80487-0. [DOI] [PubMed] [Google Scholar]
- Brokaw C. J. Non-sinusoidal bending waves of sperm flagella. J Exp Biol. 1965 Aug;43(1):155–169. doi: 10.1242/jeb.43.1.155. [DOI] [PubMed] [Google Scholar]
- Brokaw C. J., Rintala D. R. Computer simulation of flagellar movement. III. Models incorporating cross-bridge kinetics. J Mechanochem Cell Motil. 1975;3(2):77–86. [PubMed] [Google Scholar]
- Brokaw C. J., Simonick T. F. Mechanochemical coupling in flagella. V. Effects of viscosity on movement and ATP-dephosphorylation of Triton-demembranated sea-urchin spermatozoa. J Cell Sci. 1977 Feb;23:227–241. doi: 10.1242/jcs.23.1.227. [DOI] [PubMed] [Google Scholar]
- Brokaw C. J., Simonick T. F. Motility of triton-demembranated sea urchin sperm flagella during digestion by trypsin. J Cell Biol. 1977 Dec;75(3):650–665. doi: 10.1083/jcb.75.3.650. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gibbons B. H., Gibbons I. R. Flagellar movement and adenosine triphosphatase activity in sea urchin sperm extracted with triton X-100. J Cell Biol. 1972 Jul;54(1):75–97. doi: 10.1083/jcb.54.1.75. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goldstein S. F. Asymmetric waveforms in echinoderm sperm flagella. J Exp Biol. 1977 Dec;71:157–170. doi: 10.1242/jeb.71.1.157. [DOI] [PubMed] [Google Scholar]
- Goldstein S. F. Form of developing bends in reactivated sperm flagella. J Exp Biol. 1976 Feb;64(1):173–184. doi: 10.1242/jeb.64.1.173. [DOI] [PubMed] [Google Scholar]
- Hines M., Blum J. J. Bend propagation in flagella. II. Incorporation of dynein cross-bridge kinetics into the equations of motion. Biophys J. 1979 Mar;25(3):421–441. doi: 10.1016/S0006-3495(79)85313-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Holwill M. E., McGregor J. L. Control of flagellar wave movement in Crithidia oncopelti. Nature. 1975 May 8;255(5504):157–158. doi: 10.1038/255157a0. [DOI] [PubMed] [Google Scholar]
- Hyams J. S., Borisy G. G. Isolated flagellar apparatus of Chlamydomonas: characterization of forward swimming and alteration of waveform and reversal of motion by calcium ions in vitro. J Cell Sci. 1978 Oct;33:235–253. doi: 10.1242/jcs.33.1.235. [DOI] [PubMed] [Google Scholar]
- Lubliner J., Blum J. J. Analysis of form and speed of flagellar waves according to a sliding filament model. J Mechanochem Cell Motil. 1972 Aug;1(3):157–167. [PubMed] [Google Scholar]
- Machemer H. Motor activity and bioelectric control of cilia. Fortschr Zool. 1977;24(2-3):195–210. [PubMed] [Google Scholar]
- Naito Y., Kaneko H. Reactivated triton-extracted models o paramecium: modification of ciliary movement by calcium ions. Science. 1972 May 5;176(4034):523–524. doi: 10.1126/science.176.4034.523. [DOI] [PubMed] [Google Scholar]
- Rikmenspoel R. Contractile mechanisms in flagella. Biophys J. 1971 May;11(5):446–463. doi: 10.1016/S0006-3495(71)86227-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rikmenspoel R., Rudd W. G. The contractile mechanism in cilia. Biophys J. 1973 Sep;13(9):955–993. doi: 10.1016/S0006-3495(73)86037-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sale W. S., Satir P. Direction of active sliding of microtubules in Tetrahymena cilia. Proc Natl Acad Sci U S A. 1977 May;74(5):2045–2049. doi: 10.1073/pnas.74.5.2045. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Satir P. Studies on cilia. 3. Further studies on the cilium tip and a "sliding filament" model of ciliary motility. J Cell Biol. 1968 Oct;39(1):77–94. doi: 10.1083/jcb.39.1.77. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Summers K. E., Gibbons I. R. Adenosine triphosphate-induced sliding of tubules in trypsin-treated flagella of sea-urchin sperm. Proc Natl Acad Sci U S A. 1971 Dec;68(12):3092–3096. doi: 10.1073/pnas.68.12.3092. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Warner F. D., Satir P. The structural basis of ciliary bend formation. Radial spoke positional changes accompanying microtubule sliding. J Cell Biol. 1974 Oct;63(1):35–63. doi: 10.1083/jcb.63.1.35. [DOI] [PMC free article] [PubMed] [Google Scholar]