Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1979 Sep 1;82(3):783–797. doi: 10.1083/jcb.82.3.783

Regulation of surface topography of mouse peritoneal cells. Formation of microvilli and vesiculated pits on omental mesothelial cells by serum and other proteins

PMCID: PMC2110480  PMID: 92474

Abstract

The mesothelial cells of the mouse omentum provide an in vivo model for the study of the mobilization of labile microvilli on the cell surface. These mesothelial cells are sparsely covered with microvilli and large pits 150--400 nm in diameter, termed vesiculated pits. On the unstimulated cell, the microvilli average 44/100 microns2 and pits, 30/100 microns 2 of surface and they are rapidly induced to increase in number by the intraperitoneal injection of isologous mouse serum. After 2 min, microvilli increase threefold, continue to sevenfold at 30 min, and decrease to fourfold at 90 min. Vesiculated pits increased with similar kinetics. Bovine serum albumin and gamma globulin also stimulate the microvilli and pits to form, but the response is a slow, gradual rise to five- or sixfold the normal value at 90 min. Evidence indicates that multiple factors, possibly including insulin and immunoglobulins, are involved in the effect of serum. The close physical and temporal relationship between microvilli and pits suggests that a correlation exists in their mobilization by the cell and it is hypothesized that microvilli function in the regulation of the cortical microfilament network in effecting this mobilization.

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allison A. C. The role of microfilaments and microtubules in cell movement, endocytosis and exocytosis. Ciba Found Symp. 1973;14:109–148. doi: 10.1002/9780470719978.ch6. [DOI] [PubMed] [Google Scholar]
  2. Amos H., Leventhal M., Chu L., Karnovsky M. J. Modifications of mammalian cell surfaces induced by sugars: scanning electron microscopy. Cell. 1976 Jan;7(1):97–103. doi: 10.1016/0092-8674(76)90259-2. [DOI] [PubMed] [Google Scholar]
  3. Andrews P. M., Porter K. R. The ultrastructural morphology and possible functional significance of mesothelial microvilli. Anat Rec. 1973 Nov;177(3):409–426. doi: 10.1002/ar.1091770307. [DOI] [PubMed] [Google Scholar]
  4. COURTICE F. C., SIMMONDS W. J. Physiological significance of lymph drainage of the serous cavities and lungs. Physiol Rev. 1954 Jul;34(3):419–448. doi: 10.1152/physrev.1954.34.3.419. [DOI] [PubMed] [Google Scholar]
  5. Cotran R. S., Karnovsky M. J. Ultrastructural studies on the permeability of the mesothelium to horseradish peroxidase. J Cell Biol. 1968 Apr;37(1):123–137. doi: 10.1083/jcb.37.1.123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. DAVIS B. J. DISC ELECTROPHORESIS. II. METHOD AND APPLICATION TO HUMAN SERUM PROTEINS. Ann N Y Acad Sci. 1964 Dec 28;121:404–427. doi: 10.1111/j.1749-6632.1964.tb14213.x. [DOI] [PubMed] [Google Scholar]
  7. Ducibella T., Ukena T., Karnovsky M., Anderson E. Changes in cell surface and cortical cytoplasmic organization during early embryogenesis in the preimplantation mouse embryo. J Cell Biol. 1977 Jul;74(1):153–167. doi: 10.1083/jcb.74.1.153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Erickson C. A., Trinkaus J. P. Microvilli and blebs as sources of reserve surface membrane during cell spreading. Exp Cell Res. 1976 May;99(2):375–384. doi: 10.1016/0014-4827(76)90595-4. [DOI] [PubMed] [Google Scholar]
  9. FAWCETT D. W. SURFACE SPECIALIZATIONS OF ABSORBING CELLS. J Histochem Cytochem. 1965 Feb;13:75–91. doi: 10.1177/13.2.75. [DOI] [PubMed] [Google Scholar]
  10. FELIX M. D. Observations on the surface cells of the mouse omentum as studied with the phase-contrast and electron microscopes. J Natl Cancer Inst. 1961 Oct;27:713–745. [PubMed] [Google Scholar]
  11. Fedorko M. E., Hirsch J. G. Studies on transport of macromolecules and small particles across mesothelial cells of the mouse omentum. I. Morphologic aspects. Exp Cell Res. 1971 Nov;69(1):113–127. doi: 10.1016/0014-4827(71)90317-x. [DOI] [PubMed] [Google Scholar]
  12. Follett E. A., Goldman R. D. The occurrence of microvilli during spreading and growth of BHK21-C13 fibroblasts. Exp Cell Res. 1970 Jan;59(1):124–136. doi: 10.1016/0014-4827(70)90631-2. [DOI] [PubMed] [Google Scholar]
  13. HARMAN J. W., O'HEGARTY M. T., BYRNES C. K. The ultrastructure of human smooth muscle. I. Studies of cell surface and connections in normal and achalasia esophageal smooth muscle. Exp Mol Pathol. 1962 Jun;1:204–228. doi: 10.1016/0014-4800(62)90021-7. [DOI] [PubMed] [Google Scholar]
  14. Knutton S., Sumner M. C., Pasternak C. A. Role of microvilli in surface changes of synchronized P815Y mastocytoma cells. J Cell Biol. 1975 Sep;66(3):568–576. doi: 10.1083/jcb.66.3.568. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  16. Mooseker M. S., Tilney L. G. Organization of an actin filament-membrane complex. Filament polarity and membrane attachment in the microvilli of intestinal epithelial cells. J Cell Biol. 1975 Dec;67(3):725–743. doi: 10.1083/jcb.67.3.725. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. O'Neill C. H., Follett E. A. An inverse relation between cell density and the numner of microvilli in cultures of BHK 21 hamster fibroblasts. J Cell Sci. 1970 Nov;7(3):695–709. doi: 10.1242/jcs.7.3.695. [DOI] [PubMed] [Google Scholar]
  18. Orci L., Carpentier J. L., Perrelet A., Anderson R. G., Goldstein J. L., Brown M. S. Occurrence of low density lipoprotein receptors within large pits on the surface of human fibroblasts as demonstrated by freeze-etching. Exp Cell Res. 1978 Apr;113(1):1–13. doi: 10.1016/0014-4827(78)90081-2. [DOI] [PubMed] [Google Scholar]
  19. Orenstein J. M., Shelton E. Surface topography of leukocytes in situ: cells of mouse peritoneal milky spots. Exp Mol Pathol. 1976 Jun;24(3):415–423. doi: 10.1016/0014-4800(76)90075-7. [DOI] [PubMed] [Google Scholar]
  20. Porter K. R., Puck T. T., Hsie A. W., Kelley D. An electron microscopy study of the effects on dibutyryl cyclic AMP on Chinese hamster ovary cells. Cell. 1974 Jul;2(3):145–162. doi: 10.1016/0092-8674(74)90089-0. [DOI] [PubMed] [Google Scholar]
  21. Porter K., Prescott D., Frye J. Changes in surface morphology of Chinese hamster ovary cells during the cell cycle. J Cell Biol. 1973 Jun;57(3):815–836. doi: 10.1083/jcb.57.3.815. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Reaven E. P., Axline S. G. Subplasmalemmal microfilaments and microtubules in resting and phagocytizing cultivated macrophages. J Cell Biol. 1973 Oct;59(1):12–27. doi: 10.1083/jcb.59.1.12. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Reisner A. H., Nemes P., Bucholtz C. The use of Coomassie Brilliant Blue G250 perchloric acid solution for staining in electrophoresis and isoelectric focusing on polyacrylamide gels. Anal Biochem. 1975 Apr;64(2):509–516. doi: 10.1016/0003-2697(75)90461-3. [DOI] [PubMed] [Google Scholar]
  24. Rubin R. W., Everhart L. P. The effect of cell-to-cell contact on the surface morphology of Chinese hamster ovary cells. J Cell Biol. 1973 Jun;57(3):837–844. doi: 10.1083/jcb.57.3.837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. WILLIAMSON J. R. ADIPOSE TISSUE. MORPHOLOGICAL CHANGES ASSOCIATED WITH LIPID MOBILIZATION. J Cell Biol. 1964 Jan;20:57–74. doi: 10.1083/jcb.20.1.57. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Wessells N. K., Spooner B. S., Ludueña M. A. Surface movements, microfilaments and cell locomotion. Ciba Found Symp. 1973;14:53–82. doi: 10.1002/9780470719978.ch4. [DOI] [PubMed] [Google Scholar]
  27. Willingham M. C., Pastan I. Cyclic AMP modulates microvillus formation and agglutinability in transformed and normal mouse fibroblasts. Proc Natl Acad Sci U S A. 1975 Apr;72(4):1263–1267. doi: 10.1073/pnas.72.4.1263. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES