Abstract
The surface charge of cultured neurons was investigated with the electron microscope markers anionized ferritin (AF) and cationized ferritin (CF). To determine which membrane components could react with the markers, model reactions were used. Both protein-coated Sepharose beads and lipid vesicles were reacted at physiological pH. Results with these model reactions indicate that the following groups may contribute to the surface charge: acidic groups--the sialic acid of both glycoproteins and gangliosides, the carboxyl group of proteins, and the phosphates of phospholipids; basic groups--the amines of proteins. The effect of chemical fixation on the surface charge was investigated. Glutaraldehyde fixation was shown to increase the charge of neutral proteins but not by a mechanism involving unbound aldehydes. Glutaraldehyde fixation of phospholipid vesicles in the presence of CF showed that amine-containing phospholipids were cross-linked to CF. This cross-linkage was seen with the electron microscope as the clumping of CF and the burying of CF in the membrane. Paraformaldehyde fixation had a lesser effect on the charge of proteins but did react with phospholipids as did glutaraldehyde. It is concluded that at physiological pH: (a) most of the charged proteins and lipids on cell surface can contribute to the membrane surface charge, and (b) the membrane surface charge of cells can be greatly changed by chemical fixation.
Full Text
The Full Text of this article is available as a PDF (1.6 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ABRAMSON M. B., KATZMAN R., GREGOR H. P. AQUEOUS DISPERSIONS OF PHOSPHATIDYLSERINE. IONIC PROPERTIES. J Biol Chem. 1964 Jan;239:70–76. [PubMed] [Google Scholar]
- ABRAMSON M. B., KATZMAN R., WILSON C. E., GREGOR H. P. IONIC PROPERTIES OF AQUEOUS DISPERSIONS OF PHOSPHATIDIC ACID. J Biol Chem. 1964 Dec;239:4066–4072. [PubMed] [Google Scholar]
- Abe H., Moscarello M. A., Sturgess J. M. The distribution of anionic sites on the surface of the Golgi complex. J Cell Biol. 1976 Dec;71(3):973–979. doi: 10.1083/jcb.71.3.973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ambrose E. J. Electrophoretic behaviour of cells. Prog Biophys Mol Biol. 1966;16:241–265. doi: 10.1016/0079-6107(66)90008-3. [DOI] [PubMed] [Google Scholar]
- BARTLETT G. R. Phosphorus assay in column chromatography. J Biol Chem. 1959 Mar;234(3):466–468. [PubMed] [Google Scholar]
- Basu S. K., Anderson R. G., Goldstein J. L., Brown M. S. Metabolism of cationized lipoproteins by human fibroblasts. Biochemical and morphologic correlations. J Cell Biol. 1977 Jul;74(1):119–135. doi: 10.1083/jcb.74.1.119. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bishop W. H., Richards F. M. Isoelectric point of a protein in the crosslinked crystalline state: beta-lactoglobulin. J Mol Biol. 1968 Apr 28;33(2):415–421. doi: 10.1016/0022-2836(68)90198-8. [DOI] [PubMed] [Google Scholar]
- Burry R. W., Lasher R. S. A quantitative electron microscopic study of synapse formation in dispersed cell cultures of rat cerebellum stained either by Os-UL or by E-PTA. Brain Res. 1978 May 19;147(1):1–15. doi: 10.1016/0006-8993(78)90768-0. [DOI] [PubMed] [Google Scholar]
- Burry R. W., Lasher R. S. Freeze-drying of unfixed monolayer cultures for electron microscopic autoradiography. Histochemistry. 1978 Dec 13;58(4):259–272. doi: 10.1007/BF00495382. [DOI] [PubMed] [Google Scholar]
- Danon D., Goldstein L., Marikovsky Y., Skutelsky E. Use of cationized ferritin as a label of negative charges on cell surfaces. J Ultrastruct Res. 1972 Mar;38(5):500–510. doi: 10.1016/0022-5320(72)90087-1. [DOI] [PubMed] [Google Scholar]
- EYLAR E. H., MADOFF M. A., BRODY O. V., ONCLEY J. L. The contribution of sialic acid to the surface charge of the erythrocyte. J Biol Chem. 1962 Jun;237:1992–2000. [PubMed] [Google Scholar]
- Gasic G. J., Berwick L., Sorrentino M. Positive and negative colloidal iron as cell surface electron stains. Lab Invest. 1968 Jan;18(1):63–71. [PubMed] [Google Scholar]
- Gigg R., Payne S. The reaction of glutaraldehyde with tissue lipids. Chem Phys Lipids. 1969 Sep;3(3):292–295. doi: 10.1016/0009-3084(69)90021-8. [DOI] [PubMed] [Google Scholar]
- Glaeser R. M., Mel H. C. Microelectrophoretic and enzymic studies concerning the carbohydrate at the surface of rat erythrocytes. Arch Biochem Biophys. 1966 Jan;113(1):77–82. doi: 10.1016/0003-9861(66)90158-5. [DOI] [PubMed] [Google Scholar]
- Grinnell F., Anderson R. G., Hackenbrock C. R. Glutaraldehyde induced alterations of membrane anionic sites. Biochim Biophys Acta. 1976 Apr 5;426(4):772–775. doi: 10.1016/0005-2736(76)90145-0. [DOI] [PubMed] [Google Scholar]
- Grinnell F., Tobleman M. Q., Hackenbrock C. R. The distribution and mobility of anionic sites on the surfaces of baby hamster kidney cells. J Cell Biol. 1975 Sep;66(3):470–479. doi: 10.1083/jcb.66.3.470. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HEARD D. H., SEAMAN G. V. The influence of pH and ionic strength on the electrokinetic stability of the human erythrocyte membrane. J Gen Physiol. 1960 Jan;43:635–654. doi: 10.1085/jgp.43.3.635. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hackenbrock C. R., Miller K. J. The distribution of anionic sites on the surfaces of mitochondrial membranes. Visual probing with polycationic ferritin. J Cell Biol. 1975 Jun;65(3):615–630. doi: 10.1083/jcb.65.3.615. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hammes G. G., Schullery S. E. Structure of macromolecular aggregates. II. Construction of model membranes from phospholipids and polypeptides. Biochemistry. 1970 Jun 23;9(13):2555–2563. doi: 10.1021/bi00815a001. [DOI] [PubMed] [Google Scholar]
- King C. A., Preston T. M. Studies of anionic sites on the cell surface of the amoeba Naegleria gruberi using cationized ferritin. J Cell Sci. 1977 Dec;28:133–149. doi: 10.1242/jcs.28.1.133. [DOI] [PubMed] [Google Scholar]
- Lasher R. S. The uptake of (3H)GABA and differentiation of stellate neurons in cultures of dissociated postnatal rat cerebellum. Brain Res. 1974 Apr 5;69(2):235–254. doi: 10.1016/0006-8993(74)90004-3. [DOI] [PubMed] [Google Scholar]
- Marikovsky Y., Inbar M., Danon D., Sachs L. Distribution of surface charge and concanavalin A-binding sites on normal and malignant transformed cells. Exp Cell Res. 1974 Dec;89(2):359–367. doi: 10.1016/0014-4827(74)90801-5. [DOI] [PubMed] [Google Scholar]
- McIntosh T. J., Waldbillig R. C., Robertson J. D. The molecular organization of asymmetric lipid bilayers and lipid-peptide complexes. Biochim Biophys Acta. 1977 Apr 18;466(2):209–230. doi: 10.1016/0005-2736(77)90220-6. [DOI] [PubMed] [Google Scholar]
- Nicolson G. L. Anionic sites of human erythrocyte membranes. I. Effects of trypsin, phospholipase C, and pH on the topography of bound positively charged colloidal particles. J Cell Biol. 1973 May;57(2):373–387. doi: 10.1083/jcb.57.2.373. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nicolson G. L., Painter R. G. Anionic sites of human erythrocyte membranes. II. Antispectrin-induced transmembrane aggregation of the binding sites for positively charged colloidal particles. J Cell Biol. 1973 Nov;59(2 Pt 1):395–406. doi: 10.1083/jcb.59.2.395. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nir I., Hall M. O. The ultrastructure of lipid-depleted rod photoreceptor membranes. J Cell Biol. 1974 Nov;63(2 Pt 1):587–598. doi: 10.1083/jcb.63.2.587. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Peters K., Richards F. M. Chemical cross-linking: reagents and problems in studies of membrane structure. Annu Rev Biochem. 1977;46:523–551. doi: 10.1146/annurev.bi.46.070177.002515. [DOI] [PubMed] [Google Scholar]
- Phillips M. C., Finer E. G., Hauser H. Differences between conformations of lecithin and phosphatidylethanolamine polar groups and their effects on interactions of phospholipid bilayer membranes. Biochim Biophys Acta. 1972 Dec 1;290(1):397–402. doi: 10.1016/0005-2736(72)90084-3. [DOI] [PubMed] [Google Scholar]
- Pinto da Silva P., Fudenberg H. H. Anionic sites on the membrane intercalated particles of human erythrocyte ghost membranes. Freeze-etch localization. Exp Cell Res. 1973 Sep;81(1):127–138. doi: 10.1016/0014-4827(73)90119-5. [DOI] [PubMed] [Google Scholar]
- Poo M. M., Poo W. J., Lam J. W. Lateral electrophoresis and diffusion of Concanavalin A receptors in the membrane of embryonic muscle cell. J Cell Biol. 1978 Feb;76(2):483–501. doi: 10.1083/jcb.76.2.483. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Poo M., Robinson K. R. Electrophoresis of concanavalin A receptors along embryonic muscle cell membrane. Nature. 1977 Feb 17;265(5595):602–605. doi: 10.1038/265602a0. [DOI] [PubMed] [Google Scholar]
- Rennke H. G., Cotran R. S., Venkatachalam M. A. Role of molecular charge in glomerular permeability. Tracer studies with cationized ferritins. J Cell Biol. 1975 Dec;67(3):638–646. doi: 10.1083/jcb.67.3.638. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SEAMAN G. V., HEARD D. H. The surface of the washed human erythrocyte as a polyanion. J Gen Physiol. 1960 Nov;44:251–268. doi: 10.1085/jgp.44.2.251. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SEAMAN G. V., UHLENBRUCK G. The surface structure of erythrocytes from some animal sources. Arch Biochem Biophys. 1963 Mar;100:493–502. doi: 10.1016/0003-9861(63)90117-6. [DOI] [PubMed] [Google Scholar]
- Shah D. O., Schulman J. H. The ionic structure of lecithin monolayers. J Lipid Res. 1967 May;8(3):227–233. [PubMed] [Google Scholar]
- Skutelsky E., Danon D. Redistribution of surface anionic sites on the luminal front of blood vessel endothelium after interaction with polycationic ligand. J Cell Biol. 1976 Oct;71(1):232–241. doi: 10.1083/jcb.71.1.232. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stollery J. G., Vail W. J. Interactions of divalent cations or basic proteins with phosphatidylethanolamine vesicles. Biochim Biophys Acta. 1977 Dec 15;471(3):372–390. doi: 10.1016/0005-2736(77)90043-8. [DOI] [PubMed] [Google Scholar]
- Weiss L., Bello J., Cudney T. L. Positively charged groups at cell surfaces. Int J Cancer. 1968 Nov 15;3(6):795–808. doi: 10.1002/ijc.2910030613. [DOI] [PubMed] [Google Scholar]
- Weiss L., Subjeck J. R. The densities of colloidal iron hydroxide particles bound to microvilli and the spaces between them: studies on glutaraldehyde-fixed Ehrlich ascites tumour cells. J Cell Sci. 1974 Jan;14(1):215–223. doi: 10.1242/jcs.14.1.215. [DOI] [PubMed] [Google Scholar]
- Weiss L. The cell periphery. Int Rev Cytol. 1969;26:63–105. doi: 10.1016/s0074-7696(08)61634-4. [DOI] [PubMed] [Google Scholar]
- Weiss L., Zeigel R., Jung O. S., Bross I. D. Binding of positively charged particles to glutaraldehyde-fixed human erythrocytes. Exp Cell Res. 1972 Jan;70(1):57–64. doi: 10.1016/0014-4827(72)90181-4. [DOI] [PubMed] [Google Scholar]
- Wessells N. K., Nuttall R. P., Wrenn J. T., Johnson S. Differential labeling of the cell surface of single ciliary ganglion neurons in vitro. Proc Natl Acad Sci U S A. 1976 Nov;73(11):4100–4104. doi: 10.1073/pnas.73.11.4100. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Winzler R. J. Carbohydrates in cell surfaces. Int Rev Cytol. 1970;29:77–125. doi: 10.1016/s0074-7696(08)60033-9. [DOI] [PubMed] [Google Scholar]
- Wood J. G., Dawson R. M. Lipid and protein changes in sciatic nerve during Wallerian degeneration. J Neurochem. 1974 May;22(5):631–635. doi: 10.1111/j.1471-4159.1974.tb04274.x. [DOI] [PubMed] [Google Scholar]
- Wood J. G. The effects of glutaraldehyde and osmium on the proteins and lipids of myelin and mitochondria. Biochim Biophys Acta. 1973 Nov 2;329(1):118–127. doi: 10.1016/0304-4165(73)90014-7. [DOI] [PubMed] [Google Scholar]