Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1979 Sep 1;82(3):798–810. doi: 10.1083/jcb.82.3.798

Selective retrograde transsynaptic transfer of a protein, tetanus toxin, subsequent to its retrograde axonal transport

ME Schwab, K Suda, H Thoenen
PMCID: PMC2110489  PMID: 92475

Abstract

The fate of tetanus toxin (mol wt 150,000) subsequent to its retrograde axonal transport in peripheral sympathetic neurons of the rat was studied by both electron microscope autoradiography and cytochemistry using toxin-horseradish peroxidase (HRP) coupling products, and compared to that of nerve growth factor (NGF), cholera toxin, and the lectins wheat germ agglutinin (WGA), phytohaemagglutinin (PHA), and ricin. All these macromolecules are taken up by adrenergic nerve terminals and transported retrogradely in a selective, highly efficient manner. This selective uptake and transport is a consequence of the binding of these macromolecules to specific receptive sites on the nerve terminal membrane. All these ligands are transported in the axons within smooth vesicles, cisternae, and tubules. In the cell bodies these membrane compartments fuse and most of the transported macromolecules are finally incorporated into lysosomes. The cell nuclei, the parallel golgi cisternae, and the extracellular space always remain unlabeled. In case the tetanus toxin, however, a substantial fraction of the labeled material appears in presynaptic cholinergic nerve terminals which innervate the labeled ganglion cells. In these terminals tetanus toxin-HRP is localized in 500-1,000 A diam vesicles. In contrast, such a retrograde transsynaptic transfer is not at all or only very rarely detectable after retrograde transport of cholera toxin, NGF, WGA, PHA, or ricin. An atoxic fragment of the tetanus toxin, which contains the ganglioside-binding site, behaves like intact toxin. With all these macromolecules, the extracellular space and the glial cells in the ganglion remain unlabeled. We conclude that the selectivity of this transsynaptic transfer of tetanus toxin is due to a selective release of the toxin from the postsynaptic dendrites. This release is immediately followed by an uptake into the presynaptic terminals.

Full Text

The Full Text of this article is available as a PDF (1.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Avrameas S., Ternynck T. Peroxidase labelled antibody and Fab conjugates with enhanced intracellular penetration. Immunochemistry. 1971 Dec;8(12):1175–1179. doi: 10.1016/0019-2791(71)90395-8. [DOI] [PubMed] [Google Scholar]
  2. Bennett V., Craig S., Hollenberg M. D., O'Keefe E., Sahyoun N., Cuatrecasas P. Structure and function of cholera toxin and hormone receptors. J Supramol Struct. 1976;4(1):99–120. doi: 10.1002/jss.400040110. [DOI] [PubMed] [Google Scholar]
  3. Bigalke H., Dimpfel W., Habermann E. Suppression of 3H-acetylcholine release from primary nerve cell cultures by tetanus and botulinum-A toxin. Naunyn Schmiedebergs Arch Pharmacol. 1978 Jun;303(2):133–138. doi: 10.1007/BF00508058. [DOI] [PubMed] [Google Scholar]
  4. Bizzini B., Stoeckel K., Schwab M. An antigenic polypeptide fragment isolated from tetanus toxin: chemical characterization, binding to gangliosides and retrograde axonal transport in various neuron systems. J Neurochem. 1977 Mar;28(3):529–542. doi: 10.1111/j.1471-4159.1977.tb10423.x. [DOI] [PubMed] [Google Scholar]
  5. Bizzini B., Turpin A., Raynaud M. On the structure of tetanus toxin. Naunyn Schmiedebergs Arch Pharmacol. 1973;276(3-4):271–288. doi: 10.1007/BF00499881. [DOI] [PubMed] [Google Scholar]
  6. Bocchini V., Angeletti P. U. The nerve growth factor: purification as a 30,000-molecular-weight protein. Proc Natl Acad Sci U S A. 1969 Oct;64(2):787–794. doi: 10.1073/pnas.64.2.787. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Brenner H. R., Johnson E. W. Physiological and morphological effects of post-ganglionic axotomy on presynaptic nerve terminals. J Physiol. 1976 Aug;260(1):143–158. doi: 10.1113/jphysiol.1976.sp011508. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Curtis D. R., De Groat W. C. Tetanus toxin and spinal inhibition. Brain Res. 1968 Aug 26;10(2):208–212. doi: 10.1016/0006-8993(68)90123-6. [DOI] [PubMed] [Google Scholar]
  9. Curtis D. R., Felix D., Game C. J., McCulloch R. M. Tetanus toxin and the synaptic release of GABA. Brain Res. 1973 Mar 15;51:358–362. doi: 10.1016/0006-8993(73)90389-2. [DOI] [PubMed] [Google Scholar]
  10. Dumas M., Schwab M. E., Baumann R., Thoenen H. Retrograde transport of tetanus toxin through a chain of two neurons. Brain Res. 1979 Apr 13;165(2):354–357. doi: 10.1016/0006-8993(79)90569-9. [DOI] [PubMed] [Google Scholar]
  11. Dumas M., Schwab M. E., Thoenen H. Retrograde axonal transport of specific macromolecules as a tool for characterizing nerve terminal membranes. J Neurobiol. 1979 Mar;10(2):179–197. doi: 10.1002/neu.480100207. [DOI] [PubMed] [Google Scholar]
  12. Erdmann G., Wiegand H., Wellhöner H. H. Intraaxonal and extraaxonal transport of 125I-tetanus toxin in early local tetanus. Naunyn Schmiedebergs Arch Pharmacol. 1975;290(4):357–373. doi: 10.1007/BF00499949. [DOI] [PubMed] [Google Scholar]
  13. Fillenz M., Gagnon C., Stoeckel K., Thoenen H. Selective uptake and retrograde axonal transport of dopamine-beta-hydroxylase antibodies in peripheral adrenergic neurons. Brain Res. 1976 Sep 17;114(2):293–303. doi: 10.1016/0006-8993(76)90672-7. [DOI] [PubMed] [Google Scholar]
  14. Germanier R., Fürer E., Varallyay S., Inderbitzin T. M. Preparation of a purified antigenic cholera toxoid. Infect Immun. 1976 Jun;13(6):1692–1698. doi: 10.1128/iai.13.6.1692-1698.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Gonatas N. K., Kim S. U., Stieber A., Avrameas S. Internalization of lectins in neuronal GERL. J Cell Biol. 1977 Apr;73(1):1–13. doi: 10.1083/jcb.73.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Gonatas N. K., Steiber A., Kim S. U., Graham D. I., Avrameas S. Internalization of neuronal plasma membrane ricin receptors into the Golgi apparatus. Exp Cell Res. 1975 Sep;94(2):426–431. doi: 10.1016/0014-4827(75)90508-x. [DOI] [PubMed] [Google Scholar]
  17. Graham R. C., Jr, Karnovsky M. J. The early stages of absorption of injected horseradish peroxidase in the proximal tubules of mouse kidney: ultrastructural cytochemistry by a new technique. J Histochem Cytochem. 1966 Apr;14(4):291–302. doi: 10.1177/14.4.291. [DOI] [PubMed] [Google Scholar]
  18. Helting T. B., Zwisler O., Wiegandt H. Structure of tetanus toxin. II. Toxin binding to ganglioside. J Biol Chem. 1977 Jan 10;252(1):194–198. [PubMed] [Google Scholar]
  19. Holtzman E. The origin and fate of secretory packages, especially synaptic vesicles. Neuroscience. 1977;2(3):327–355. doi: 10.1016/0306-4522(77)90001-x. [DOI] [PubMed] [Google Scholar]
  20. Jessen K. R., Chubb I. W., Smith A. D. Intracellular localization of acetylcholinesterase in nerve terminals and capillaries of the rat superior cervical ganglion. J Neurocytol. 1978 Apr;7(2):145–154. doi: 10.1007/BF01217914. [DOI] [PubMed] [Google Scholar]
  21. Kopriwa B. M. A reliable, standardized method for ultrastructural electron microscopic radioautography. Histochemie. 1973 Oct 3;37(1):1–17. doi: 10.1007/BF00306855. [DOI] [PubMed] [Google Scholar]
  22. Kreutzberg G. W., Tóth L., Kaiya H. Acetylcholinesterase as a marker for dendritic transport and dendritic secretion. Adv Neurol. 1975;12:269–281. [PubMed] [Google Scholar]
  23. Kristensson K. Retrograde transport of macromolecules in axons. Annu Rev Pharmacol Toxicol. 1978;18:97–110. doi: 10.1146/annurev.pa.18.040178.000525. [DOI] [PubMed] [Google Scholar]
  24. Matsuda M., Yoneda M. Reconstitution of tetanus neurotoxin from two antigenically active polypeptide fragments. Biochem Biophys Res Commun. 1976 Feb 9;68(3):668–674. doi: 10.1016/0006-291x(76)91197-9. [DOI] [PubMed] [Google Scholar]
  25. Matthews M. R., Nelson V. H. Detachment of structurally intact nerve endings from chromatolytic neurones of rat superior cervical ganglion during the depression of synaptic transmission induced by post-ganglionic axotomy. J Physiol. 1975 Feb;245(1):91–135. doi: 10.1113/jphysiol.1975.sp010837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Mazurkiewicz J. E., Nakane P. K. Light and electron microscopic localization of antigens in tissues embedded in polyethylene glycol with a peroxidase labeled antibody method. J Histochem Cytochem. 1972 Dec;20(12):969–974. doi: 10.1177/20.12.969. [DOI] [PubMed] [Google Scholar]
  27. Mendell L. M., Munson J. B., Scott J. G. Alterations of synapses on axotomized motoneurones. J Physiol. 1976 Feb;255(1):67–79. doi: 10.1113/jphysiol.1976.sp011270. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Nakane P. K., Kawaoi A. Peroxidase-labeled antibody. A new method of conjugation. J Histochem Cytochem. 1974 Dec;22(12):1084–1091. doi: 10.1177/22.12.1084. [DOI] [PubMed] [Google Scholar]
  29. Nauta H. J., Kaiserman-Abramof I. R., Lasek R. J. Electron microscopic observations of horseradish peroxidase transported from the caudoputamen to the substantia nigra in the rat: possible involvement of the agranular reticulum. Brain Res. 1975 Mar 7;85(3):373–384. doi: 10.1016/0006-8993(75)90814-8. [DOI] [PubMed] [Google Scholar]
  30. Osborne R. H., Bradford H. F. Tetanus toxin inhibits amino acid release from nerve endings in vitro. Nat New Biol. 1973 Aug 1;244(135):157–158. doi: 10.1038/newbio244157a0. [DOI] [PubMed] [Google Scholar]
  31. Otten U., Schwab M., Gagnon C., Thoenen H. Selective induction of tyrosine hydroxylase and dopamine beta-hydroxylase by nerve growth factor: comparison between adrenal medulla and sympathetic ganglia of adult and newborn rats. Brain Res. 1977 Sep 16;133(2):291–303. doi: 10.1016/0006-8993(77)90765-x. [DOI] [PubMed] [Google Scholar]
  32. Paravicini U., Stoeckel K., Thoenen H. Biological importance of retrograde axonal transport of nerve growth factor in adrenergic neurons. Brain Res. 1975 Feb 7;84(2):279–291. doi: 10.1016/0006-8993(75)90982-8. [DOI] [PubMed] [Google Scholar]
  33. Price D. L., Griffin J. W., Peck K. Tetanus toxin: evidence for binding at presynaptic nerve endings. Brain Res. 1977 Feb;121(2):379–384. doi: 10.1016/0006-8993(77)90163-9. [DOI] [PubMed] [Google Scholar]
  34. Price D. L., Griffin J., Young A., Peck K., Stocks A. Tetanus toxin: direct evidence for retrograde intraaxonal transport. Science. 1975 May 30;188(4191):945–947. doi: 10.1126/science.49080. [DOI] [PubMed] [Google Scholar]
  35. Price P., Fisher A. W. Electron microscopical study of retrograde axonal transport of horseradish peroxidase in the supraoptico-hypophyseal tract in rat. J Anat. 1978 Jan;125(Pt 1):137–147. [PMC free article] [PubMed] [Google Scholar]
  36. Purves D. Functional and structural changes in mammalian sympathetic neurones following colchicine application to post-ganglionic nerves. J Physiol. 1976 Jul;259(1):159–175. doi: 10.1113/jphysiol.1976.sp011459. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Purves D. Functional and structural changes in mammalian sympathetic neurones following interruption of their axons. J Physiol. 1975 Nov;252(2):429–463. doi: 10.1113/jphysiol.1975.sp011151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Schwab M. E., Javoy-Agid F., Agid Y. Labeled wheat germ agglutinin (WGA) as a new, highly sensitive retrograde tracer in the rat brain hippocampal system. Brain Res. 1978 Aug 18;152(1):145–150. doi: 10.1016/0006-8993(78)90140-3. [DOI] [PubMed] [Google Scholar]
  39. Schwab M. E., Thoenen H. Electron microscopic evidence for a transsynaptic migration of tetanus toxin in spinal cord motoneurons: an autoradiographic and morphometric study. Brain Res. 1976 Mar 26;105(2):213–227. doi: 10.1016/0006-8993(76)90422-4. [DOI] [PubMed] [Google Scholar]
  40. Schwab M. E., Thoenen H. Selective binding, uptake, and retrograde transport of tetanus toxin by nerve terminals in the rat iris. An electron microscope study using colloidal gold as a tracer. J Cell Biol. 1978 Apr;77(1):1–13. doi: 10.1083/jcb.77.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Schwab M. E. Ultrastructural localization of a nerve growth factor-horseradish peroxidase (NGF-HRP) coupling product after retrograde axonal transport in adrenergic neurons. Brain Res. 1977 Jul 8;130(1):190–196. doi: 10.1016/0006-8993(77)90857-5. [DOI] [PubMed] [Google Scholar]
  42. Schwab M., Agid Y., Glowinski J., Thoenen H. Retrograde axonal transport of 125I-tetanus toxin as a tool for tracing fiber connections in the central nervous system; connections of the rostral part of the rat neostriatum. Brain Res. 1977 May 6;126(2):211–224. doi: 10.1016/0006-8993(77)90722-3. [DOI] [PubMed] [Google Scholar]
  43. Stoeckel K., Guroff G., Schwab M., Thoenen H. The significance of retrograde axonal transport for the accumulation of systemically administered nerve growth factor (NGF) in the rat superior cervical ganglion. Brain Res. 1976 Jun 11;109(2):271–284. doi: 10.1016/0006-8993(76)90530-8. [DOI] [PubMed] [Google Scholar]
  44. Stoeckel K., Schwab M., Thoenen H. Role of gangliosides in the uptake and retrograde axonal transport of cholera and tetanus toxin as compared to nerve growth factor and wheat germ agglutinin. Brain Res. 1977 Aug 26;132(2):273–285. doi: 10.1016/0006-8993(77)90421-8. [DOI] [PubMed] [Google Scholar]
  45. Stöckel K., Paravicini U., Thoenen H. Specificity of the retrograde axonal transport of nerve growth factor. Brain Res. 1974 Aug 23;76(3):413–421. doi: 10.1016/0006-8993(74)90818-x. [DOI] [PubMed] [Google Scholar]
  46. Stöckel K., Schwab M., Thoenen H. Comparison between the retrograde axonal transport of nerve growth factor and tetanus toxin in motor, sensory and adrenergic neurons. Brain Res. 1975 Nov 28;99(1):1–16. doi: 10.1016/0006-8993(75)90604-6. [DOI] [PubMed] [Google Scholar]
  47. Suda K., Barde Y. A., Thoenen H. Nerve growth factor in mouse and rat serum: correlation between bioassay and radioimmunoassay determinations. Proc Natl Acad Sci U S A. 1978 Aug;75(8):4042–4046. doi: 10.1073/pnas.75.8.4042. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Sumner B. E. Quantitative ultrastructural observations on the inhibited recovery of the hypoglossal nucleus from the axotomy response when regeneration of the hypoglossal nerve is prevented. Exp Brain Res. 1976 Sep 24;26(2):141–150. doi: 10.1007/BF00238278. [DOI] [PubMed] [Google Scholar]
  49. Teichberg S., Holtzman E., Crain S. M., Peterson E. R. Circulation and turnover of synaptic vesicle membrane in cultured fetal mammalian spinal cord neurons. J Cell Biol. 1975 Oct;67(1):215–230. doi: 10.1083/jcb.67.1.215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Turner P. T., Harris A. B. Ultrastructure of exogenous peroxidase in cerebral cortex. Brain Res. 1974 Jul 12;74(2):305–326. doi: 10.1016/0006-8993(74)90585-x. [DOI] [PubMed] [Google Scholar]
  51. Weldon P. R. Pinocytotic uptake and intracellular distribution of colloidal thorium dioxide by cultured sensory neurites. J Neurocytol. 1975 Jun;4(3):341–356. doi: 10.1007/BF01102117. [DOI] [PubMed] [Google Scholar]
  52. Yokota R., Yamauchi A. Ultrastructure of the mouse superior cervical ganglion, with particular reference to the pre- and postganglionic elements covering the soma of its principal neurons. Am J Anat. 1974 Jun;140(2):281–297. doi: 10.1002/aja.1001400211. [DOI] [PubMed] [Google Scholar]
  53. Ziegler M. G., Thomas J. A., Jacobowitz D. M. Retrograde axonal transport of antibody to dopamine-beta-hydroxylase. Brain Res. 1976 Mar 12;104(2):390–395. doi: 10.1016/0006-8993(76)90638-7. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES