Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1979 Sep 1;82(3):742–754. doi: 10.1083/jcb.82.3.742

Regional differentiation of the sperm surface as studied with 125I- diiodofluorescein isothiocyanate, an impermeant reagent that allows isolation of the labeled components

PMCID: PMC2110495  PMID: 511933

Abstract

The regional differentiation of the sperm surface has been studied with the aid of a novel covalent labeling technique that permits concurrent cytological, biochemical, and immunological analyses. For these studies isothiocyanate derivatives of fluorescein (FITC) and diiodofluorescein (IFC) were employed: the latter can be prepared with radioiodine to high specific activity (125IFC) and is an impermeant reagent for the erythrocyte surface. Sperm of sea urchin (Strongylocentrotus purpuratus), medaka )Oryzias latipes), and golden hamster bind the fluorescent chromophores with a nonuniform distribution, most of the fluorescence being associated with the midpiece. The radioactive derivative 125IFC permits an analysis of the proteins that are responsible for most of the binding. Additionally, 125 IFC-labeled sperm are capable of fertilizing eggs, as assessed by autoradiography. That IFC labels the surface of the sperm was inferred from the following: (a) the labeling of the surfaces of other cells by fluorescein isothiocyanate and its derivatives; (b) the agglutination of labeled sperm by antibodies directed against IFC; (c) the use of peroxidase-dependent immunocytochemical reaction using anti-IFC antibodies, with analysis by electron microscopy; and (d) extraction of labeled sea urchin sperm with Triton X-100 under conditions that preferentially solubilize the plasma membrane. The antiserum directed against IFC was used to isolate the labeled surface components from Triton X-100 extracts of whole sperm, by immunoprecipitation, with Staphylococcus-A protein serving as a coprecipitant. The results support previous data showing that the sperm surface is a heterogeneous mosaic of restricted domains, one notable zone being the midpiece, where common molecular properties may be shared by sperm with distinctly different morphologies. In addition, IFC-mediated covalent alteration of specific cell surface proteins may be used to label, to identify, and, with the use of anti-IFC antibodies, to isolate such proteins from other cellular constituents.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aketa K. Physiological studies on the sperm surface component responsible for sperm-egg bonding in sea urchin fertilization. II. Effect of concanavalin A on the fertilizing capacity of sperm. Exp Cell Res. 1975 Jan;90(1):56–62. doi: 10.1016/0014-4827(75)90356-0. [DOI] [PubMed] [Google Scholar]
  2. Ames G. F. Lipids of Salmonella typhimurium and Escherichia coli: structure and metabolism. J Bacteriol. 1968 Mar;95(3):833–843. doi: 10.1128/jb.95.3.833-843.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Edelman G. M., Millette C. F. Molecular probes of spermatozoan structures. Proc Natl Acad Sci U S A. 1971 Oct;68(10):2436–2440. doi: 10.1073/pnas.68.10.2436. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Edidin M., Zagyansky Y., Lardner T. J. Measurement of membrane protein lateral diffusion in single cells. Science. 1976 Feb 6;191(4226):466–468. doi: 10.1126/science.1246629. [DOI] [PubMed] [Google Scholar]
  5. Fellous M., Gachelin G., Buc-Caron M. H., Dubois P., Jacob F. Similar location of an early embryonic antigen on mouse and human spermatozoa. Dev Biol. 1974 Dec;41(2):331–337. doi: 10.1016/0012-1606(74)90310-8. [DOI] [PubMed] [Google Scholar]
  6. Finegold L., Baker E. A., Epel D. Sea urchin egg fertilization studied with a fluorescent probe (ANS). Exp Cell Res. 1974 Jun;86(2):248–252. doi: 10.1016/0014-4827(74)90710-1. [DOI] [PubMed] [Google Scholar]
  7. Friend D. S., Fawcett D. W. Membrane differentiations in freeze-fractured mammalian sperm. J Cell Biol. 1974 Nov;63(2 Pt 1):641–664. doi: 10.1083/jcb.63.2.641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gabel C. A., Shapiro B. M. [125I]diiodofluorescein isothiocyanate: its synthesis and use as a reagent for labeling proteins and cells to high specific radioactivity. Anal Biochem. 1978 Jun 1;86(2):396–406. doi: 10.1016/0003-2697(78)90763-7. [DOI] [PubMed] [Google Scholar]
  9. Gall W. E., Millette C. F., Edelman G. M. Chemical and structural analysis of mammalian spermatozoa. Basic Life Sci. 1974;4(Pt A):241–257. doi: 10.1007/978-1-4684-2889-6_16. [DOI] [PubMed] [Google Scholar]
  10. Geiger P. J., Bessman S. P. Protein determination by Lowry's method in the presence of sulfhydryl reagents. Anal Biochem. 1972 Oct;49(2):467–473. doi: 10.1016/0003-2697(72)90450-2. [DOI] [PubMed] [Google Scholar]
  11. Gibbons B. H., Gibbons I. R. Flagellar movement and adenosine triphosphatase activity in sea urchin sperm extracted with triton X-100. J Cell Biol. 1972 Jul;54(1):75–97. doi: 10.1083/jcb.54.1.75. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Graham R. C., Jr, Karnovsky M. J. The early stages of absorption of injected horseradish peroxidase in the proximal tubules of mouse kidney: ultrastructural cytochemistry by a new technique. J Histochem Cytochem. 1966 Apr;14(4):291–302. doi: 10.1177/14.4.291. [DOI] [PubMed] [Google Scholar]
  13. Kessler S. W. Cell membrane antigen isolation with the staphylococcal protein A-antibody adsorbent. J Immunol. 1976 Nov;117(5 Pt 1):1482–1490. [PubMed] [Google Scholar]
  14. Kinsey W. H., Koehler J. K. Fine structural localization of Concanavalin A binding sites on hamster spermatozoa. J Supramol Struct. 1976;5(2):185–198. doi: 10.1002/jss.400050207. [DOI] [PubMed] [Google Scholar]
  15. Koehler J. K., Gaddum-Rosse P. Media induced alterations of the membrane associated particles of the guinea pig sperm tail. J Ultrastruct Res. 1975 Apr;51(1):106–118. doi: 10.1016/s0022-5320(75)80012-8. [DOI] [PubMed] [Google Scholar]
  16. Koehler J. K. Studies on the distribution of antigenic sites on the surface of rabbit spermatozoa. J Cell Biol. 1975 Dec;67(3):647–659. doi: 10.1083/jcb.67.3.647. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Koehler J. K. The mammalian sperm surface: studies with specific labeling techniques. Int Rev Cytol. 1978;54:73–108. doi: 10.1016/s0074-7696(08)60165-5. [DOI] [PubMed] [Google Scholar]
  18. Koo G. C., Stackpole C. W., Boyse E. A., Hämmerling U., Lardis M. P. Topographical location of H-Y antigen on mouse spermatozoa by immunoelectronmicroscopy. Proc Natl Acad Sci U S A. 1973 May;70(5):1502–1505. doi: 10.1073/pnas.70.5.1502. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lopatin D. E., Voss E. W., Jr Fluorescein. Hapten and antibody active-site probe. Biochemistry. 1971 Jan 19;10(2):208–213. doi: 10.1021/bi00778a003. [DOI] [PubMed] [Google Scholar]
  20. March S. C., Parikh I., Cuatrecasas P. A simplified method for cyanogen bromide activation of agarose for affinity chromatography. Anal Biochem. 1974 Jul;60(1):149–152. doi: 10.1016/0003-2697(74)90139-0. [DOI] [PubMed] [Google Scholar]
  21. Mellish K. S., Baker R. D. Marking boar spermatozoa with fluorochromes for evaluating spermatozoan transport within gilts. J Anim Sci. 1970 Nov;31(5):917–922. doi: 10.2527/jas1970.315917x. [DOI] [PubMed] [Google Scholar]
  22. Nicolson G. L., Usui N., Yanagimachi R., Yanagimachi H., Smith J. R. Lectin-binding sites on the plasma membranes of rabbit spermatozoa. Changes in surface receptors during epididymal Maturation and after ejaculation. J Cell Biol. 1977 Sep;74(3):950–962. doi: 10.1083/jcb.74.3.950. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Nicolson G. L., Yanagimachi R. Mobility and the restriction of mobility of plasma membrane lectin-binding components. Science. 1974 Jun 21;184(4143):1294–1296. doi: 10.1126/science.184.4143.1294. [DOI] [PubMed] [Google Scholar]
  24. Overstreet J. W., Bedford J. M. Transport, capacitation and fertilizing ability of epididymal spermatozoa. J Exp Zool. 1974 Aug;189(2):203–214. doi: 10.1002/jez.1401890208. [DOI] [PubMed] [Google Scholar]
  25. Peters R., Peters J., Tews K. H., Bähr W. A microfluorimetric study of translational diffusion in erythrocyte membranes. Biochim Biophys Acta. 1974 Nov 15;367(3):282–294. doi: 10.1016/0005-2736(74)90085-6. [DOI] [PubMed] [Google Scholar]
  26. Phillips D. R., Morrison M. The arrangement of proteins in the human erythrocyte membrane. Biochem Biophys Res Commun. 1970 Jul 27;40(2):284–289. doi: 10.1016/0006-291x(70)91007-7. [DOI] [PubMed] [Google Scholar]
  27. Romrell L. J., O'Rand M. G. Capping and ultrastructural localization of sperm surface isoantigens during spermatogenesis. Dev Biol. 1978 Mar;63(1):76–93. doi: 10.1016/0012-1606(78)90115-x. [DOI] [PubMed] [Google Scholar]
  28. Shapiro B. M. Limited proteolysis of some egg surface components is an early event following fertilization of the sea urchin, Strongylocentrotus purpuratus. Dev Biol. 1975 Sep;46(1):88–102. doi: 10.1016/0012-1606(75)90089-5. [DOI] [PubMed] [Google Scholar]
  29. Smith D. C., Klebanoff S. J. A uterine fluid-mediated sperm-inhibitory system. Biol Reprod. 1970 Oct;3(2):229–235. doi: 10.1093/biolreprod/3.2.229. [DOI] [PubMed] [Google Scholar]
  30. Yanagimachi R., Noda Y. D., Fujimoto M., Nicolson G. L. The distribution of negative surface charges on mammalian spermatozoa. Am J Anat. 1972 Dec;135(4):497–519. doi: 10.1002/aja.1001350405. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES