Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1979 Sep 1;82(3):664–674. doi: 10.1083/jcb.82.3.664

Reversible inhibition of Chlamydomonas flagellar surface motility

PMCID: PMC2110497  PMID: 117013

Abstract

Chlamydomonas exhibits force transduction in association with its flagellar surface; this can be visualized by the saltatory movements of attached polystyrene microspheres. This flagellar surface motility has been quantitated by determining the percentage of attached microspheres in motion at the time of observation (60% in the case of control cells at 25 degrees C). A number of experimental treatments reversibly inhibit flagellar surface motility. These include an increase in sodium or potassium chloride concentration, a decrease in temperature, or a decrease in the free calcium concentration in the medium. Many of the conditions that result in inhibition of flagellar surface motility also result in an induction of flagellar resorption. Although both flagellar stability and flagellar surface motility are dependent on the availability of calcium, the two processes are separable; under appropriate conditions, flagellar surface motility can occur at normal levels on flagella that are resorbing. Inhibition of protein synthesis results in a gradual loss of both the binding of microspheres to the flagellum and the flagellar surface motility. After resumption of protein synthesis, both binding and movement return to control levels. The effect of the inhibition of protein synthesis is interpreted in terms of selective turnover of certain components within the intact flagellum, one or more of these components being necessary for the binding of the microspheres and their subsequent movement. If this turnover is inhibited by keeping the cells below 5 degrees C, the absence of protein synthesis no longer has an effect on microsphere attachment and motility, when measured immediately after warming the cells to 25 degrees C.

Full Text

The Full Text of this article is available as a PDF (854.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen R. D. A reinvestigation of cross-sections of cilia. J Cell Biol. 1968 Jun;37(3):825–831. doi: 10.1083/jcb.37.3.825. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bergman K., Goodenough U. W., Goodenough D. A., Jawitz J., Martin H. Gametic differentiation in Chlamydomonas reinhardtii. II. Flagellar membranes and the agglutination reaction. J Cell Biol. 1975 Dec;67(3):606–622. doi: 10.1083/jcb.67.3.606. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bloodgood R. A. Motility occurring in association with the surface of the Chlamydomonas flagellum. J Cell Biol. 1977 Dec;75(3):983–989. doi: 10.1083/jcb.75.3.983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bloodgood R. A. Unidirectional motility occurring in association with the axopodial membrane of Echinosphaerium nucleofilum. Cell Biol Int Rep. 1978 Mar;2(2):171–176. doi: 10.1016/0309-1651(78)90038-3. [DOI] [PubMed] [Google Scholar]
  5. Edidin M., Weiss A. Antigen cap formation in cultured fibroblasts: a reflection of membrane fluidity and of cell motility. Proc Natl Acad Sci U S A. 1972 Sep;69(9):2456–2459. doi: 10.1073/pnas.69.9.2456. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Farrell K. W. Flagellar regeneration in Chlamydomonas reinhardtii: evidence that cycloheximide pulses induce a delay in morphogenesis. J Cell Sci. 1976 May;20(3):639–654. doi: 10.1242/jcs.20.3.639. [DOI] [PubMed] [Google Scholar]
  7. Goodenough U. W., Jurivich D. Tipping and mating-structure activation induced in Chlamydomonas gametes by flagellar membrane antisera. J Cell Biol. 1978 Dec;79(3):680–693. doi: 10.1083/jcb.79.3.680. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gorovsky M. A., Carlson K., Rosenbaum J. L. Simple method for quantitive densitometry of polyacrylamide gels using fast green. Anal Biochem. 1970 Jun;35(2):359–370. doi: 10.1016/0003-2697(70)90196-x. [DOI] [PubMed] [Google Scholar]
  9. Lefebvre P. A., Nordstrom S. A., Moulder J. E., Rosenbaum J. L. Flagellar elongation and shortening in Chlamydomonas. IV. Effects of flagellar detachment, regeneration, and resorption on the induction of flagellar protein synthesis. J Cell Biol. 1978 Jul;78(1):8–27. doi: 10.1083/jcb.78.1.8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. McLEAN R. J., Laurendi C. J., Brown R. M., Jr The relationship of gamone to the mating reaction in Chlamydomonas moewusii. Proc Natl Acad Sci U S A. 1974 Jul;71(7):2610–2613. doi: 10.1073/pnas.71.7.2610. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. McMahon D., Blaschko W. Chloral hydrate inhibits protein synthesis in vivo. Biochim Biophys Acta. 1971 May 13;238(2):338–342. doi: 10.1016/0005-2787(71)90101-8. [DOI] [PubMed] [Google Scholar]
  12. Nelsen E. M. Regulation of tubulin during ciliary regeneration in non-growing Tetrahymena. Exp Cell Res. 1975 Aug;94(1):152–158. doi: 10.1016/0014-4827(75)90542-x. [DOI] [PubMed] [Google Scholar]
  13. PORTZEHL H., CALDWELL P. C., RUEEGG J. C. THE DEPENDENCE OF CONTRACTION AND RELAXATION OF MUSCLE FIBRES FROM THE CRAB MAIA SQUINADO ON THE INTERNAL CONCENTRATION OF FREE CALCIUM IONS. Biochim Biophys Acta. 1964 May 25;79:581–591. doi: 10.1016/0926-6577(64)90224-4. [DOI] [PubMed] [Google Scholar]
  14. Quader H., Cherniack J., Filner P. Participation of calcium in flagellar shortening and regeneration in Chlamydomonas reinhardii. Exp Cell Res. 1978 May;113(2):295–301. doi: 10.1016/0014-4827(78)90369-5. [DOI] [PubMed] [Google Scholar]
  15. Ringo D. L. Flagellar motion and fine structure of the flagellar apparatus in Chlamydomonas. J Cell Biol. 1967 Jun;33(3):543–571. doi: 10.1083/jcb.33.3.543. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. SAGER R., GRANICK S. Nutritional studies with Chlamydomonas reinhardi. Ann N Y Acad Sci. 1953 Oct 14;56(5):831–838. doi: 10.1111/j.1749-6632.1953.tb30261.x. [DOI] [PubMed] [Google Scholar]
  17. Sattler C. A., Staehelin L. A. Ciliary membrane differentiations in Tetrahymena pyriformis. Tetrahymena has four types of cilia. J Cell Biol. 1974 Aug;62(2):473–490. doi: 10.1083/jcb.62.2.473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Schreiner G. F., Unanue E. R. Calcium-sensitive modulation of Ig capping: evidence supporting a cytoplasmic control of ligand-receptor complexes. J Exp Med. 1976 Jan 1;143(1):15–31. doi: 10.1084/jem.143.1.15. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Snell W. J. Mating in Chlamydomonas: a system for the study of specific cell adhesion. I. Ultrastructural and electrophoretic analyses of flagellar surface components involved in adhesion. J Cell Biol. 1976 Jan;68(1):48–69. doi: 10.1083/jcb.68.1.48. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Troyer D. Possible involvement of the plasma membrane in saltatory particle movement in heliozoan axopods. Nature. 1975 Apr 24;254(5502):696–698. doi: 10.1038/254696a0. [DOI] [PubMed] [Google Scholar]
  21. Watanabe T., Flavin M. Nucleotide-metabolizing enzymes in Chlamydomonas flagella. J Biol Chem. 1976 Jan 10;251(1):182–192. [PubMed] [Google Scholar]
  22. Watanabe T., Flavin M. Two types of adenosine triphosphatase from flagella of Chlamydomonas reinhardi. Biochem Biophys Res Commun. 1973 May 1;52(1):195–201. doi: 10.1016/0006-291x(73)90973-x. [DOI] [PubMed] [Google Scholar]
  23. Witman G. B., Carlson K., Berliner J., Rosenbaum J. L. Chlamydomonas flagella. I. Isolation and electrophoretic analysis of microtubules, matrix, membranes, and mastigonemes. J Cell Biol. 1972 Sep;54(3):507–539. doi: 10.1083/jcb.54.3.507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. de Petris S. Concanavalin A receptors, immunoglobulins, and theta antigen of the lymphocyte surface. Interactions with concanavalin A and with Cytoplasmic structures. J Cell Biol. 1975 Apr;65(1):123–146. doi: 10.1083/jcb.65.1.123. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES