Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1979 Dec 1;83(3):529–543. doi: 10.1083/jcb.83.3.529

Effects of cytoskeletal perturbant drugs on ecto 5'-nucleotidase, a concanavalin A receptor

PMCID: PMC2110505  PMID: 230191

Abstract

Differences in cell morphology, concanavalin A-induced receptor redistributions, and the cooperativity of the inhibition of 5'- nucleotidase (AMPase) by concanavalin A (Con A) have been investigated in ascites sublines of the 13762 rat mammary adenocarcinoma cells treated with microfilament- and microtubule-perturbing drugs. By scanning electron microscopy MAT-C1 cells exhibit a highly irregular surface, covered with microvilli extending as branched structures from the cell body. MAT-A, MAT-B, and MAT-B1 cells have a more normal appearance, with unbranched microvilli, ruffles, ridges, and blebs associated closely with the cell body. MAT-C cells have an intermediate morphology. Treatment of MAT-A, MAT-B, or MAT-B1 cells with Con A causes rapid redistribution of Con A receptors. Both cytochalasins and colchicine cause alternations in the receptor redistributions. Receptors on MAT-C1 cells are highly resistant to redistribution, even in the presence of cytoskeletal perturbant drugs. The cooperativity of the inhibition of AMPase by Con A was investigated in MAT-A and MAT-C1 cells. Untreated cells exhibit no cooperativity. If either subline is treated with colchicine, cytochalasin B or D, or dibucaine, cooperativity is observed. Lumicolchicine has no effect. Theophylline or dibutyryl cyclic AMP prevents the effects of either colchicine or cytochalasin. The concentration required for half-maximal induction of cooperativity is 0.3--0.4 microM for both colchicine and cytochalasin D, which is in the appropriate range for specific microtubule and microfilament disruptions. The effectiveness of the cytochalasins (E greater than D greater than B) is consistent with their known effects on microfilaments. No direct correlation was observed between the induction of cooperativity and drug-induced changes in Con A receptor redistribution or cell morphology. The morphology of MAT-A cells is grossly altered by cytochalasins or dibucaine and somewhat less by colchicine. MAT-C1 cells exhibit more minor alterations in morphology as a result of these drug treatments. The results of this study indicate that the inhibition of AMPase, which is a Con A receptor, is a different process from the redistribution of the bulk of the Con A receptors, possibly short range membrane interactions rather than global effects on the cell.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Borysenko J. Z., Ukena T. E., Karnovsky M. J. Effects of db-cAMP and theophylline on Concanavalin A binding site distribution on transformed and protease-treated cell lines. Exp Cell Res. 1977 Jul;107(2):253–260. doi: 10.1016/0014-4827(77)90407-4. [DOI] [PubMed] [Google Scholar]
  2. Carraway C. A., Carraway K. L. Concanavalin A perturbation of membrane enzymes of mammary gland. J Supramol Struct. 1976;4(1):121–126. doi: 10.1002/jss.400040111. [DOI] [PubMed] [Google Scholar]
  3. Carraway C. A., Jett G., Carraway K. L. Cooperative effects in the perturbation of membrane enzymes by concanavalin A. Biochem Biophys Res Commun. 1975 Dec 15;67(4):1301–1306. doi: 10.1016/0006-291x(75)90168-0. [DOI] [PubMed] [Google Scholar]
  4. Carraway K. L., Fogle D. D., Chestnut R. W., Huggins J. W., Carraway C. A. Ecto-enzymes of mammary gland and its tumors. Lectin inhibition of 5'-nucleotidase of the 13762 rat mammary ascites carcinoma. J Biol Chem. 1976 Oct 25;251(20):6173–6178. [PubMed] [Google Scholar]
  5. Dornand J., Bonnafous J. C., Mani J. C. Effects of con A and other lectins on pure 5'nucleotidase isolated from lymphocyte plasma membranes. Biochem Biophys Res Commun. 1978 May 30;82(2):685–692. doi: 10.1016/0006-291x(78)90929-4. [DOI] [PubMed] [Google Scholar]
  6. Fuller G. M., Brinkley B. R. Structure and control of assembly of cytoplasmic microtubules in normal and transformed cells. J Supramol Struct. 1976;5(4):497(349)–514(366). doi: 10.1002/jss.400050407. [DOI] [PubMed] [Google Scholar]
  7. Korn E. D. Biochemistry of actomyosin-dependent cell motility (a review). Proc Natl Acad Sci U S A. 1978 Feb;75(2):588–599. doi: 10.1073/pnas.75.2.588. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Lelievre L., Zachowski A., Maget-Dana R., Aubry J., Jonkman-Bark G. Differences in the modulations of the soluble of plasma-membrane-bound 5'-nucleotidase. Eur J Biochem. 1977 Oct 17;80(1):185–191. doi: 10.1111/j.1432-1033.1977.tb11870.x. [DOI] [PubMed] [Google Scholar]
  9. Lin D. C., Lin S. High affinity binding of [3H]dihydrocytochalasin B to peripheral membrane proteins related to the control of cell shape in the human red cell. J Biol Chem. 1978 Mar 10;253(5):1415–1419. [PubMed] [Google Scholar]
  10. Lin S., Lin D. C., Flanagan M. D. Specificity of the effects of cytochalasin B on transport and motile processes. Proc Natl Acad Sci U S A. 1978 Jan;75(1):329–333. doi: 10.1073/pnas.75.1.329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Mannherz H. G., Rohr G. 5'-Nucleotidase reverses the inhibitory action of actin on pancreatic deoxyribonuclease I. FEBS Lett. 1978 Nov 15;95(2):284–289. doi: 10.1016/0014-5793(78)81012-6. [DOI] [PubMed] [Google Scholar]
  12. Miranda A. F., Godman G. C., Tanenbaum S. W. Action of cytochalasin D on cells of established lines. II. Cortex and microfilaments. J Cell Biol. 1974 Aug;62(2):406–423. doi: 10.1083/jcb.62.2.406. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Mizel S. B., Wilson L. Nucleoside transport in mammalian cells. Inhibition by colchicine. Biochemistry. 1972 Jul 4;11(14):2573–2578. doi: 10.1021/bi00764a003. [DOI] [PubMed] [Google Scholar]
  14. Moore P. B., Anderson D. R., Huggins J. W., Carraway K. L. Cytoskeletal proteins associated with cell surface envelopes from sarcoma 180 ascites tumor cells. Biochem Biophys Res Commun. 1976 Sep 7;72(1):288–294. doi: 10.1016/0006-291x(76)90992-x. [DOI] [PubMed] [Google Scholar]
  15. Moore P. B., Ownby C. L., Carraway K. L. Interactions of cytoskeletal elements with the plasma membrane of sarcoma180 ascites tumor cells. Exp Cell Res. 1978 Sep;115(2):331–342. doi: 10.1016/0014-4827(78)90287-2. [DOI] [PubMed] [Google Scholar]
  16. Nicolson G. L. Transmembrane control of the receptors on normal and tumor cells. I. Cytoplasmic influence over surface components. Biochim Biophys Acta. 1976 Apr 13;457(1):57–108. doi: 10.1016/0304-4157(76)90014-9. [DOI] [PubMed] [Google Scholar]
  17. Puck T. T. Cyclic AMP, the microtubule-microfilament system, and cancer. Proc Natl Acad Sci U S A. 1977 Oct;74(10):4491–4495. doi: 10.1073/pnas.74.10.4491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Riemer B. L., Widnell C. C. The demonstration of a specific 5'-nucleotidase activity in rat tissues. Arch Biochem Biophys. 1975 Nov;171(1):343–347. doi: 10.1016/0003-9861(75)90041-7. [DOI] [PubMed] [Google Scholar]
  19. Riordan J. R., Slavik M. Interactions of lectins with membrane glycoproteins. Effects of concanavalin A on 5'-nucleotidase. Biochim Biophys Acta. 1974 Dec 24;373(3):356–360. doi: 10.1016/0005-2736(74)90015-7. [DOI] [PubMed] [Google Scholar]
  20. Segaloff A. Hormones and breast cancer. Recent Prog Horm Res. 1966;22:351–379. doi: 10.1016/b978-1-4831-9825-5.50012-9. [DOI] [PubMed] [Google Scholar]
  21. Shin B. C., Carraway K. L. Cell surface constituents of Sarcoma 180 ascites tumor cells. Biochim Biophys Acta. 1973 Dec 22;330(3):254–268. doi: 10.1016/0005-2736(73)90231-9. [DOI] [PubMed] [Google Scholar]
  22. Slavik M., Kartner N., Riordan J. R. Lectin-induced inhibition of plasma membrane 5'-nucleotidase: sensitivity of purified enzyme. Biochem Biophys Res Commun. 1977 Mar 21;75(2):342–349. doi: 10.1016/0006-291x(77)91048-8. [DOI] [PubMed] [Google Scholar]
  23. Stefanovic V., Mandel P., Rosenberg A. Concanavalin A inhibition of ecto-5'-nucleotidase of intact cultured C6 glioma cells. J Biol Chem. 1975 Sep 10;250(17):7081–7083. [PubMed] [Google Scholar]
  24. Tannenbaum J., Tanenbaum S. W., Godman G. C. The binding sites of cytochalasin D. II. Their relationship to hexose transport and to cytochalasin B. J Cell Physiol. 1977 May;91(2):239–248. doi: 10.1002/jcp.1040910209. [DOI] [PubMed] [Google Scholar]
  25. Turtle J. R., Kipnis D. M. An adrenergic receptor mechanism for the control of cyclic 3'5' adenosine monophosphate synthesis in tissues. Biochem Biophys Res Commun. 1967 Sep 7;28(5):797–802. doi: 10.1016/0006-291x(67)90388-9. [DOI] [PubMed] [Google Scholar]
  26. Wessells N. K., Spooner B. S., Ash J. F., Bradley M. O., Luduena M. A., Taylor E. L., Wrenn J. T., Yamada K. Microfilaments in cellular and developmental processes. Science. 1971 Jan 15;171(3967):135–143. doi: 10.1126/science.171.3967.135. [DOI] [PubMed] [Google Scholar]
  27. Wilson L., Bamburg J. R., Mizel S. B., Grisham L. M., Creswell K. M. Interaction of drugs with microtubule proteins. Fed Proc. 1974 Feb;33(2):158–166. [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES