Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1979 Dec 1;83(3):576–587. doi: 10.1083/jcb.83.3.576

Evidence for the participation of actin microfilaments and bristle coats in the internalization of gap junction membrane

PMCID: PMC2110506  PMID: 574870

Abstract

Thin sections of rabbit granulosa, human SW-13 adrenal cortical adenocarcinoma, and mouse B-16 melanoma cells revealed an apparent single-layered basket of 4- to 7-nm filaments surrounding cytoplasmic gap junction vesicles. This interpretation was based upon apparent longitudinal, cross, and en face sections of structures surrounding the vesicle profiles in tissue treated with tannic acid-glutaraldehyde. In granulosa cells incubated with the S-1 fragment of heavy meromyosin, arrowhead-decorated filaments were observed at the periphery of the gap junction vesicles, suggesting that these filaments contained actin. In addition, we found that small gap junctional blebs and vesicles at the cell surface were coated with short electron-dense bristles similar in appearance to the cloathrin-containing coat of coated vesicles of nonjunctional membrane. The role of these and other cytoskeletal elements in the possible endocytosis of gap junction membrane is discussed.

Full Text

The Full Text of this article is available as a PDF (1.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albertini D. F., Anderson E. Microtubule and microfilament rearrangements during capping of concanavalin A receptors on cultured ovarian granulosa cells. J Cell Biol. 1977 Apr;73(1):111–127. doi: 10.1083/jcb.73.1.111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Albertini D. F., Fawcett D. W., Olds P. J. Morphological variations in gap junctions of ovarian granulosa cells. Tissue Cell. 1975;7(2):389–405. doi: 10.1016/0040-8166(75)90014-2. [DOI] [PubMed] [Google Scholar]
  3. Allison A. C., Davies P., De Petris S. Role of contractile microfilaments in macrophage movement and endocytosis. Nat New Biol. 1971 Aug 4;232(31):153–155. doi: 10.1038/newbio232153a0. [DOI] [PubMed] [Google Scholar]
  4. Allison A. C., Davies P. Mechanisms of endocytosis and exocytosis. Symp Soc Exp Biol. 1974;(28):419–446. [PubMed] [Google Scholar]
  5. Bjersing L., Cajander S. Ovulation and the mechanism of follicle rupture. IV. Ultrastructure of membrana granulosa of rabbit graafian follicles prior to induced ovulation. Cell Tissue Res. 1974;153(1):1–14. doi: 10.1007/BF00225441. [DOI] [PubMed] [Google Scholar]
  6. Bretscher A., Weber K. Localization of actin and microfilament-associated proteins in the microvilli and terminal web of the intestinal brush border by immunofluorescence microscopy. J Cell Biol. 1978 Dec;79(3):839–845. doi: 10.1083/jcb.79.3.839. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Burnside B. Thin (actin) and thick (myosinlike) filaments in cone contraction in the teleost retina. J Cell Biol. 1978 Jul;78(1):227–246. doi: 10.1083/jcb.78.1.227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Clarke M., Schatten G., Mazia D., Spudich J. A. Visualization of actin fibers associated with the cell membrane in amoebae of Dictyostelium discoideum. Proc Natl Acad Sci U S A. 1975 May;72(5):1758–1762. doi: 10.1073/pnas.72.5.1758. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Espey L. L., Stutts R. H. Exchange of cytoplasm between cells of the membrana granulosa in rabbit ovarian follicles. Biol Reprod. 1972 Feb;6(1):168–175. doi: 10.1093/biolreprod/6.1.168. [DOI] [PubMed] [Google Scholar]
  10. Fujiwara K., Pollard T. D. Fluorescent antibody localization of myosin in the cytoplasm, cleavage furrow, and mitotic spindle of human cells. J Cell Biol. 1976 Dec;71(3):848–875. doi: 10.1083/jcb.71.3.848. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Fujiwara K., Porter M. E., Pollard T. D. Alpha-actinin localization in the cleavage furrow during cytokinesis. J Cell Biol. 1978 Oct;79(1):268–275. doi: 10.1083/jcb.79.1.268. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Garant P. R. The demonstration of complex gap junctions between the cells of the enamel organ with lanthanum nitrate. J Ultrastruct Res. 1972 Aug;40(3):333–348. doi: 10.1016/s0022-5320(72)90105-0. [DOI] [PubMed] [Google Scholar]
  13. Ginzberg R. D., Gilula N. B. Modulation of cell junctions during differentiation of the chicken otocyst sensory epithelium. Dev Biol. 1979 Jan;68(1):110–129. doi: 10.1016/0012-1606(79)90247-1. [DOI] [PubMed] [Google Scholar]
  14. Hoffstein S., Weissmann G. Microfilaments and microtubules in calcium ionophore-induced secretion of lysosomal enzymes from human polymorphonuclear leukocytes. J Cell Biol. 1978 Sep;78(3):769–781. doi: 10.1083/jcb.78.3.769. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. KIELLEY W. W., BRADLEY L. B. The relationship between sulfhydryl groups and the activation of myosin adenosinetriphosphatase. J Biol Chem. 1956 Feb;218(2):653–659. [PubMed] [Google Scholar]
  16. KIELLEY W. W., KALCKAR H. M., BRADLEY L. B. The hydrolysis of purine and pyrimidine nucleoside triphosphates by myosin. J Biol Chem. 1956 Mar;219(1):95–101. [PubMed] [Google Scholar]
  17. Kanaseki T., Kadota K. The "vesicle in a basket". A morphological study of the coated vesicle isolated from the nerve endings of the guinea pig brain, with special reference to the mechanism of membrane movements. J Cell Biol. 1969 Jul;42(1):202–220. doi: 10.1083/jcb.42.1.202. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Larsen W. J., Hai-Nan Origin and fate of cytoplasmic gap junctional vesicles in rabbit granulosa cells. Tissue Cell. 1978;10(3):585–598. doi: 10.1016/s0040-8166(16)30351-2. [DOI] [PubMed] [Google Scholar]
  19. Larsen W. J. Structural diversity of gap junctions. A review. Tissue Cell. 1977;9(3):373–394. doi: 10.1016/0040-8166(77)90001-5. [DOI] [PubMed] [Google Scholar]
  20. Lazarides E., Granger B. L. Fluorescent localization of membrane sites in glycerinated chicken skeletal muscle fibers and the relationship of these sites to the protein composition of the Z disc. Proc Natl Acad Sci U S A. 1978 Aug;75(8):3683–3687. doi: 10.1073/pnas.75.8.3683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Leibovitz A., McCombs W. M., 3rd, Johnston D., McCoy C. E., Stinson J. C. New human cancer cell culture lines. I. SW-13, small-cell carcinoma of the adrenal cortex. J Natl Cancer Inst. 1973 Aug;51(2):691–697. [PubMed] [Google Scholar]
  22. McNutt N. S. A thin-section and freeze-fracture study of microfilament-membrane attachments in choroid plexus and intestinal microvilli. J Cell Biol. 1978 Dec;79(3):774–787. doi: 10.1083/jcb.79.3.774. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Merk F. B., Albright J. T., Botticelli C. R. The fine structure of granulosa cell nexuses in rat ovarian follicles. Anat Rec. 1973 Jan;175(1):107–125. doi: 10.1002/ar.1091750110. [DOI] [PubMed] [Google Scholar]
  24. Mooseker M. S., Tilney L. G. Organization of an actin filament-membrane complex. Filament polarity and membrane attachment in the microvilli of intestinal epithelial cells. J Cell Biol. 1975 Dec;67(3):725–743. doi: 10.1083/jcb.67.3.725. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Ostlund R. E., Leung J. T., Kipnis D. M. Muscle actin filaments bind pituitary secretory granules in vitro. J Cell Biol. 1977 Apr;73(1):78–87. doi: 10.1083/jcb.73.1.78. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Pearse B. M. Clathrin: a unique protein associated with intracellular transfer of membrane by coated vesicles. Proc Natl Acad Sci U S A. 1976 Apr;73(4):1255–1259. doi: 10.1073/pnas.73.4.1255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Perdue J. F. The distribution, ultrastructure, and chemistry of microfilaments in cultured chick embryo fibroblasts. J Cell Biol. 1973 Aug;58(2):265–283. doi: 10.1083/jcb.58.2.265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Pollard T. D., Korn E. D. Electron microscopic identification of actin associated with isolated amoeba plasma membranes. J Biol Chem. 1973 Jan 25;248(2):448–450. [PubMed] [Google Scholar]
  29. Pollard T. D., Weihing R. R. Actin and myosin and cell movement. CRC Crit Rev Biochem. 1974 Jan;2(1):1–65. doi: 10.3109/10409237409105443. [DOI] [PubMed] [Google Scholar]
  30. Reaven E. P., Axline S. G. Subplasmalemmal microfilaments and microtubules in resting and phagocytizing cultivated macrophages. J Cell Biol. 1973 Oct;59(1):12–27. doi: 10.1083/jcb.59.1.12. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Schloss J. A., Milsted A., Goldman R. D. Myosin subfragment binding for the localization of actin-like microfilaments in cultured cells. A light and electron microscope study. J Cell Biol. 1977 Sep;74(3):794–815. doi: 10.1083/jcb.74.3.794. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Schook W., Ores C., Puszkin S. Isolation and properties of brain alpha-actinin. Biochem J. 1978 Oct 1;175(1):63–72. doi: 10.1042/bj1750063. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Schroeder T. E. Actin in dividing cells: contractile ring filaments bind heavy meromyosin. Proc Natl Acad Sci U S A. 1973 Jun;70(6):1688–1692. doi: 10.1073/pnas.70.6.1688. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Silverstein S. C., Steinman R. M., Cohn Z. A. Endocytosis. Annu Rev Biochem. 1977;46:669–722. doi: 10.1146/annurev.bi.46.070177.003321. [DOI] [PubMed] [Google Scholar]
  35. Tamm S. L. Laser microbeam study of a rotary motor in termite flagellates. Evidence that the axostyle complex generates torque. J Cell Biol. 1978 Jul;78(1):76–92. doi: 10.1083/jcb.78.1.76. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Weeds A. G., Taylor R. S. Separation of subfragment-1 isoenzymes from rabbit skeletal muscle myosin. Nature. 1975 Sep 4;257(5521):54–56. doi: 10.1038/257054a0. [DOI] [PubMed] [Google Scholar]
  37. Wessells N. K., Spooner B. S., Ash J. F., Bradley M. O., Luduena M. A., Taylor E. L., Wrenn J. T., Yamada K. Microfilaments in cellular and developmental processes. Science. 1971 Jan 15;171(3967):135–143. doi: 10.1126/science.171.3967.135. [DOI] [PubMed] [Google Scholar]
  38. Willingham M. C., Yamada K. M., Yamada S. S., Pouysségur J., Pastan I. Microfilament bundles and cell shape are related to adhesiveness to substratum and are dissociable from growth control in cultured fibroblasts. Cell. 1977 Mar;10(3):375–380. doi: 10.1016/0092-8674(77)90024-1. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES