Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1979 Dec 1;83(3):633–648. doi: 10.1083/jcb.83.3.633

The contractile basis of ameboid movement. VI. The solation-contraction coupling hypothesis

PMCID: PMC2110508  PMID: 42649

Abstract

The contracted pellets derived from a high-speed supernate of Dictyostelium discoideum (S3) were investigated to determine the functional activity associated with this specific subset of the cellular motile apparatus. A partially purified model system of gelation and contraction (S6) was prepared from the contracted pellets, and the presence of calcium- and pH-sensitive gelation and contraction in this model demonstrated that a functional cytoskeletal-contratile complex remained at least partially associated with the actin and myosin during contraction. Semi-quantitative assays of gelation and solation in the myosin-free preparation S6 included measurements of turbidity, relative viscosity, and strain birefringence. The extent of gelation was optimal at pH 6.8 and a free calcium ion concentration of approximately 3.0 x 10(-8) M. Solation was favored when the free calcium ion concentration was greater than 7.6 x 10(-7) M or when the pH was increased or decreased from pH 6.8. Gelation was reversibly inhibited by increasing the free calcium ion concentration to approxomately 4.6 x 10(-6) M at pH 6.8. The solation-gelation process of this model has been interpreted to involve the reversible cross- linking of actin filaments. The addition of purified D. discoideum myosin to S6 served to reconstitute calcium- and pH-regulated contraction. The results from this study indicate that contraction is coupled functionally to the local breakdown (solation) of the gel. Therefore, solation has been identified as a structural requirement for extensive shortening during contraction. We have called this concept the solation-contraction coupling hypothesis. Fractionation of a preparation derived from the contracted pellets yielded a fraction consisting of actin and a 95,000-dalton polypeptide that exhibited calcium-sensitive gelation at 28 degrees C and a fraction composed of actin and 30,000- and 18,000-dalton polypeptides that demonstrated calcium-sensitive genlation at 0 degrees C.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bray D., Thomas C. Unpolymerized actin in fibroblasts and brain. J Mol Biol. 1976 Aug 25;105(4):527–544. doi: 10.1016/0022-2836(76)90233-3. [DOI] [PubMed] [Google Scholar]
  2. Brotschi E. A., Hartwig J. H., Stossel T. P. The gelation of actin by actin-binding protein. J Biol Chem. 1978 Dec 25;253(24):8988–8993. [PubMed] [Google Scholar]
  3. Carlsson L., Nyström L. E., Lindberg U., Kannan K. K., Cid-Dresdner H., Lövgren S. Crystallization of a non-muscle actin. J Mol Biol. 1976 Aug 15;105(3):353–366. doi: 10.1016/0022-2836(76)90098-x. [DOI] [PubMed] [Google Scholar]
  4. Clarke M., Spudich J. A. Biochemical and structural studies of actomyosin-like proteins from non-muscle cells. Isolation and characterization of myosin from amoebae of Dictyostelium discoideum. J Mol Biol. 1974 Jun 25;86(2):209–222. doi: 10.1016/0022-2836(74)90013-8. [DOI] [PubMed] [Google Scholar]
  5. Clarke M., Spudich J. A. Nonmuscle contractile proteins: the role of actin and myosin in cell motility and shape determination. Annu Rev Biochem. 1977;46:797–822. doi: 10.1146/annurev.bi.46.070177.004053. [DOI] [PubMed] [Google Scholar]
  6. Condeelis J. S., Taylor D. L. The contractile basis of amoeboid movement. V. The control of gelation, solation, and contraction in extracts from Dictyostelium discoideum. J Cell Biol. 1977 Sep;74(3):901–927. doi: 10.1083/jcb.74.3.901. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Griffith L. M., Pollard T. D. Evidence for actin filament-microtubule interaction mediated by microtubule-associated proteins. J Cell Biol. 1978 Sep;78(3):958–965. doi: 10.1083/jcb.78.3.958. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hartree E. F. Determination of protein: a modification of the Lowry method that gives a linear photometric response. Anal Biochem. 1972 Aug;48(2):422–427. doi: 10.1016/0003-2697(72)90094-2. [DOI] [PubMed] [Google Scholar]
  9. Hitchcock S. E. Regulation of motility in nonmuscle cells. J Cell Biol. 1977 Jul;74(1):1–15. doi: 10.1083/jcb.74.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kane R. E. Actin polymerization and interaction with other proteins in temperature-induced gelation of sea urchin egg extracts. J Cell Biol. 1976 Dec;71(3):704–714. doi: 10.1083/jcb.71.3.704. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kato T., Tonomura Y. Ca2+-sensitivity of actomyosin ATPase purified from Physarum polycephalum. J Biochem. 1975 Jun;77(6):1127–1134. [PubMed] [Google Scholar]
  12. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  13. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  14. Malchow D., Nanjundiah V., Wurster B., Eckstein F., Gerisch G. Cyclic AMP-induced pH changes in Dictyostelium discoideum and their control by calcium. Biochim Biophys Acta. 1978 Feb 1;538(3):473–480. doi: 10.1016/0304-4165(78)90408-7. [DOI] [PubMed] [Google Scholar]
  15. Maruta H., Korn E. D. Purification from Acanthamoeba castellanii of proteins that induce gelation and syneresis of F-actin. J Biol Chem. 1977 Jan 10;252(1):399–402. [PubMed] [Google Scholar]
  16. Mockrin S. C., Spudich J. A. Calcium control of actin-activated myosin adenosine triphosphatase from Dictyostelium discoideum. Proc Natl Acad Sci U S A. 1976 Jul;73(7):2321–2325. doi: 10.1073/pnas.73.7.2321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Moore P. B., Carraway K. L. Proteolytic enhancement of gelation of ascites tumor cell extracts. Relationship to actin binding protein. Biochem Biophys Res Commun. 1978 Feb 14;80(3):560–567. doi: 10.1016/0006-291x(78)91605-4. [DOI] [PubMed] [Google Scholar]
  18. Nuccitelli R., Poo M. M., Jaffe L. F. Relations between ameboid movement and membrane-controlled electrical currents. J Gen Physiol. 1977 Jun;69(6):743–763. doi: 10.1085/jgp.69.6.743. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Podlubnaya Z. A., Tskhovrebova L. A., Zaalishtsbvili M. M., Stefanenko G. A. Electron microscopic study of alpha-actinin. J Mol Biol. 1975 Feb 25;92(2):357–359. doi: 10.1016/0022-2836(75)90234-x. [DOI] [PubMed] [Google Scholar]
  20. Pollard T. D. Cytoskeletal functions of cytoplasmic contractile proteins. J Supramol Struct. 1976;5(3):317–334. doi: 10.1002/jss.400050306. [DOI] [PubMed] [Google Scholar]
  21. Pollard T. D. The role of actin in the temperature-dependent gelation and contraction of extracts of Acanthamoeba. J Cell Biol. 1976 Mar;68(3):579–601. doi: 10.1083/jcb.68.3.579. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Spudich J. A., Clarke M. The contractile proteins of Dictyostelium discoideum. J Supramol Struct. 1974;2(2-4):150–162. doi: 10.1002/jss.400020209. [DOI] [PubMed] [Google Scholar]
  23. Spudich J. A., Cooke R. Supramolecular forms of actin from amoebae of Dictyostelium discoideum. J Biol Chem. 1975 Sep 25;250(18):7485–7491. [PubMed] [Google Scholar]
  24. Spudich J. A., Watt S. The regulation of rabbit skeletal muscle contraction. I. Biochemical studies of the interaction of the tropomyosin-troponin complex with actin and the proteolytic fragments of myosin. J Biol Chem. 1971 Aug 10;246(15):4866–4871. [PubMed] [Google Scholar]
  25. Stossel T. P., Hartwig J. H. Interactions of actin, myosin, and a new actin-binding protein of rabbit pulmonary macrophages. II. Role in cytoplasmic movement and phagocytosis. J Cell Biol. 1976 Mar;68(3):602–619. doi: 10.1083/jcb.68.3.602. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Tanaka H., Hatano S. Extraction of native tropomyosin-like substances from myxomycete plasmodium and the cross reaction between plasmodium F-actin and muscle native tropomyosin. Biochim Biophys Acta. 1972 Feb 29;257(2):445–451. doi: 10.1016/0005-2795(72)90297-8. [DOI] [PubMed] [Google Scholar]
  27. Taylor D. L., Condeelis J. S. Cytoplasmic structure and contractility in amoeboid cells. Int Rev Cytol. 1979;56:57–144. doi: 10.1016/s0074-7696(08)61821-5. [DOI] [PubMed] [Google Scholar]
  28. Taylor D. L., Condeelis J. S., Moore P. L., Allen R. D. The contractile basis of amoeboid movement. I. The chemical control of motility in isolated cytoplasm. J Cell Biol. 1973 Nov;59(2 Pt 1):378–394. doi: 10.1083/jcb.59.2.378. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Taylor D. L., Rhodes J. A., Hammond S. A. The contractile basis of ameboid movement. II. Structure and contractility of motile extracts and plasmalemma-ectoplasm ghosts. J Cell Biol. 1976 Jul;70(1):123–143. doi: 10.1083/jcb.70.1.123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Taylor D. L. The contractile basis of amoeboid movement. IV. The viscoelasticity and contractility of amoeba cytoplasm in vivo. Exp Cell Res. 1977 Mar 15;105(2):413–426. doi: 10.1016/0014-4827(77)90138-0. [DOI] [PubMed] [Google Scholar]
  31. Wang K., Ash J. F., Singer S. J. Filamin, a new high-molecular-weight protein found in smooth muscle and non-muscle cells. Proc Natl Acad Sci U S A. 1975 Nov;72(11):4483–4486. doi: 10.1073/pnas.72.11.4483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Wick U., Malchow D., Gerisch G. Cyclic-AMP stimulated calcium influx into aggregating cells of Dictyostelium discoideum. Cell Biol Int Rep. 1978 Jan;2(1):71–79. doi: 10.1016/0309-1651(78)90086-3. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES