Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1980 Jan 1;84(1):40–56. doi: 10.1083/jcb.84.1.40

Adhesion between liposomes mediated by the chlorophyll a/b light- harvesting complex isolated from chloroplast membranes

PMCID: PMC2110522  PMID: 7350170

Abstract

A highly purified chlorophyll a/b light-harvesting complex (chl a/b LHC; chl a/b ratio 1.2) was obtained from Triton-solubilized chloroplast membranes of pea and barley according to the method of Burke et al. (1978, Arch. Biochem. Biophys. 187: 252--263). Gel electrophoresis of the cation-precipitated chl a/b LHC from peas reveals the presence of four polypeptides in the 23- to 28-kdalton size range. Three of these peptides appear to be identical to those derived from re-electrophoresed CPII and CPII* bands. In freeze-fracture replicas, the cation-precipitated chl a/b LHC appears as a semicrystalline aggregate of membranous sheets containing closely spaced granules. Upon removal of the cations by dialysis, the aggregates break up into their constituent membranous sheets without changing their granular substructure. These membranous sheets can be resolubilized in 1.5% Triton X-100, and the chl a/b LHC particles then reconstituted into soybean lecithin liposomes. Freeze-fracture micrographs of the reconstituted chl a/b LHC vesicles suspended in a low salt medium reveal randomly dispersed approximately 80-A particles on both concave and convex fracture faces as well as some crystalline particle arrays, presumably resulting from incompletely solubilized fragments of the membranous sheets. Based on the approximately 80-A diameter of the particles, and on the assumption that one freeze- fracture particle represents the structural unit of one chl a/b LHC aggregate, a theoretical mol wt of approximately 200 kdalton has been calculated for the chl a/b LHC. Deep-etching and negative-staining techniques reveal that the chl a/b LHC particles are also exposed on the surface of the bilayer membranes. Addition of greater than or equal to 2 mM MgCl2 or greater than or equal to 60 mM NaCl to the reconstituted vesicles leads to their aggregation and, with divalent cations, to the formation of extensive membrane stacks. At the same time, the chl a/b LHC particles become clustered into the adhering membrane regions. Under these conditions the particles in adjacent membranes usually become precisely aligned. Evidence is presented to aupport the hypothesis that adhesion between the chl a/b LHC particles is mediated by hydrophobic interactions, and that the cations are needed to neutralize surface charges on the particles.

Full Text

The Full Text of this article is available as a PDF (2.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson J. M. The molecular organization of chloroplast thylakoids. Biochim Biophys Acta. 1975 Aug 15;416(2):191–235. doi: 10.1016/0304-4173(75)90007-5. [DOI] [PubMed] [Google Scholar]
  2. Apel K. The light-harvesting chlorophylla a/b.protein complex of the green alga Acetabularia mediterranea. Isolation and characterization of two subunits. Biochim Biophys Acta. 1977 Nov 17;462(2):390–402. doi: 10.1016/0005-2728(77)90137-2. [DOI] [PubMed] [Google Scholar]
  3. Armond P. A., Staehelin L. A., Arntzen C. J. Spatial relationship of photosystem I, photosystem II, and the light-harvesting complex in chloroplast membranes. J Cell Biol. 1977 May;73(2):400–418. doi: 10.1083/jcb.73.2.400. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Arntzen C. J., Ditto C. L. Effects of cations upon chloroplast membrane subunit. Interactions and excitation energy distribution. Biochim Biophys Acta. 1976 Nov 9;449(2):259–274. doi: 10.1016/0005-2728(76)90138-9. [DOI] [PubMed] [Google Scholar]
  5. Barber J. Energy transfer and its dependence on membrane properties. Ciba Found Symp. 1978 Feb 7;(61):283–304. doi: 10.1002/9780470720431.ch15. [DOI] [PubMed] [Google Scholar]
  6. Burke J. J., Ditto C. L., Arntzen C. J. Involvement of the light-harvesting complex in cation regulation of excitation energy distribution in chloroplasts. Arch Biochem Biophys. 1978 Apr 15;187(1):252–263. doi: 10.1016/0003-9861(78)90031-0. [DOI] [PubMed] [Google Scholar]
  7. Chua N. H., Blomberg F. Immunochemical studies of thylakoid membrane polypeptides from spinach and Chlamydomonas reinhardtii. A modified procedure for crossed immunoelectrophoresis of dodecyl sulfate.protein complexes. J Biol Chem. 1979 Jan 10;254(1):215–223. [PubMed] [Google Scholar]
  8. Delepelaire P., Chua N. H. Lithium dodecyl sulfate/polyacrylamide gel electrophoresis of thylakoid membranes at 4 degrees C: Characterizations of two additional chlorophyll a-protein complexes. Proc Natl Acad Sci U S A. 1979 Jan;76(1):111–115. doi: 10.1073/pnas.76.1.111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dunkley P. R., Anderson J. M. The light-harvesting chlorophyll a/b-protein complex from barley thylakoid membranes. Polypeptide composition and characterization of an oligomer. Biochim Biophys Acta. 1979 Jan 11;545(1):174–187. [PubMed] [Google Scholar]
  10. Gerritsen W. J., Verkley A. J., Zwaal R. F., Van Deenen L. L. Freeze-fracture appearance and disposition of band 3 protein from the human erythrocyte membrane in lipid vesicles. Eur J Biochem. 1978 Apr;85(1):255–261. doi: 10.1111/j.1432-1033.1978.tb12234.x. [DOI] [PubMed] [Google Scholar]
  11. Henriques F., Park R. B. Characterization of three new chlorophyll-protein complexes. Biochem Biophys Res Commun. 1978 Apr 28;81(4):1113–1118. doi: 10.1016/0006-291x(78)91251-2. [DOI] [PubMed] [Google Scholar]
  12. Henriques F., Park R. Polypeptide composition of chlorophyll-protein complexes from romaine lettuce. Plant Physiol. 1977 Jul;60(1):64–68. doi: 10.1104/pp.60.1.64. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Izawa S., Good N. E. Effect of Salts and Electron Transport on the Conformation of Isolated Chloroplasts. II. Electron Microscopy. Plant Physiol. 1966 Mar;41(3):544–552. doi: 10.1104/pp.41.3.544. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  15. Machold O., Meister A. Resolution of the light-harvesting chlorophyll a/b-protein of vicia faba chloroplasts into two different chlorophyll-protein complexes. Biochim Biophys Acta. 1979 Jun 5;546(3):472–480. doi: 10.1016/0005-2728(79)90082-3. [DOI] [PubMed] [Google Scholar]
  16. Miller K. R., Staehelin L. A. Analysis of the thylakoid outer surface. Coupling factor is limited to unstacked membrane regions. J Cell Biol. 1976 Jan;68(1):30–47. doi: 10.1083/jcb.68.1.30. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Murakami S., Packer L. The role of cations in the organization of chloroplast membranes. Arch Biochem Biophys. 1971 Sep;146(1):337–347. doi: 10.1016/s0003-9861(71)80072-3. [DOI] [PubMed] [Google Scholar]
  18. Ojakian G. K., Satir P. Particle movements in chloroplast membranes: quantitative measurements of membrane fluidity by the freeze-fracture technique. Proc Natl Acad Sci U S A. 1974 May;71(5):2052–2056. doi: 10.1073/pnas.71.5.2052. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Staehelin L. A., Arntzen C. J. Effects of ions and gravity forces on the supramolecular organization and excitation energy distribution in chloroplast membranes. Ciba Found Symp. 1978 Feb 7;(61):147–175. doi: 10.1002/9780470720431.ch8. [DOI] [PubMed] [Google Scholar]
  20. Staehelin L. A. Reversible particle movements associated with unstacking and restacking of chloroplast membranes in vitro. J Cell Biol. 1976 Oct;71(1):136–158. doi: 10.1083/jcb.71.1.136. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Takahashi M., Gross E. L. Use of immobilized light-harvesting chlorophyll a/b protein to study the stoichiometry of its self-association. Biochemistry. 1978 Mar 7;17(5):806–810. doi: 10.1021/bi00598a009. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES