Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1980 Jan 1;84(1):120–130. doi: 10.1083/jcb.84.1.120

Absence of fibronectin and presence of plasminogen activator in both normal and malignant human mammary epithelial cells in culture

PMCID: PMC2110535  PMID: 6985612

Abstract

Primary monolayer cultures of normal and malignant human mammary epithelial cells were tested for fibronectin by indirect immunofluorescence using antisera specific for fibronectin. This protein was not detectable on either the normal or malignant epithelial cells. Similar results were obtained for normal and malignant mouse mammary epithelial cell cultures. Control normal and transformed fibroblasts exhibited the expected result: the normal cells were positive and the transformed cells were negative. With the use of supernatant fluids from the same cultures or an agar-overlay assay on viable cells, high levels of plasminogen-dependent fibrinolytic activity were detectable in both the normal and malignant mammary cells. Thus, two characteristics that distinguish normal from transformed fibroblasts do not serve as markers of malignancy in mammary epithelial/carcinoma systems.

Full Text

The Full Text of this article is available as a PDF (953.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barrett J. C., Crawford B. D., Ts'o P. O. Quantitation of fibrinolytic activity of Syrian hamster fibroblasts using 3H-labeled fibrinogen prepared by reductive alkylation. Cancer Res. 1977 Apr;37(4):1182–1185. [PubMed] [Google Scholar]
  2. Birdwell C. R., Gospodarowicz D., Nicolson G. L. Identification, localization, and role of fibronectin in cultured bovine endothelial cells. Proc Natl Acad Sci U S A. 1978 Jul;75(7):3273–3277. doi: 10.1073/pnas.75.7.3273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Blumberg P. M., Robbins P. W. Effect of proteases on activation of resting chick embryo fibroblasts and on cell surface proteins. Cell. 1975 Oct;6(2):137–147. doi: 10.1016/0092-8674(75)90004-5. [DOI] [PubMed] [Google Scholar]
  4. Chen L. B., Gallimore P. H., McDougall J. K. Correlation between tumor induction and the large external transformation sensitive protein on the cell surface. Proc Natl Acad Sci U S A. 1976 Oct;73(10):3570–3574. doi: 10.1073/pnas.73.10.3570. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chen L. B., Maitland N., Gallimore P. H., McDougall J. K. Detection of the large external transformation-sensitive protein on some epithelial cells. Exp Cell Res. 1977 Apr;106(1):39–46. doi: 10.1016/0014-4827(77)90238-5. [DOI] [PubMed] [Google Scholar]
  6. Crouch E., Balian G., Holbrook K., Duksin D., Bornstein P. Amniotic fluid fibronectin. Characterization and synthesis by cells in culture. J Cell Biol. 1978 Sep;78(3):701–715. doi: 10.1083/jcb.78.3.701. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Furmanski P., Longley C., Fouchey D., Rich R., Rich M. A. Normal human mammary cells in culture: evidence for oncornavirus-like particles. J Natl Cancer Inst. 1974 Mar;52(3):975–977. doi: 10.1093/jnci/52.3.975. [DOI] [PubMed] [Google Scholar]
  8. Goldberg A. R. Increased protease levels in transformed cells: a casein overlay assay for the detection of plasminogen activator production. Cell. 1974 Jun;2(2):95–102. doi: 10.1016/0092-8674(74)90097-x. [DOI] [PubMed] [Google Scholar]
  9. Hogg N. M. A comparison of membrane proteins of normal and transformed cells by lactoperoxidase labeling. Proc Natl Acad Sci U S A. 1974 Feb;71(2):489–492. doi: 10.1073/pnas.71.2.489. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Horwitz K. B., McGuire W. L. Estrogen control of progesterone receptor in human breast cancer. Correlation with nuclear processing of estrogen receptor. J Biol Chem. 1978 Apr 10;253(7):2223–2228. [PubMed] [Google Scholar]
  11. Hynes R. O. Cell surface proteins and malignant transformation. Biochim Biophys Acta. 1976 Apr 30;458(1):73–107. doi: 10.1016/0304-419x(76)90015-9. [DOI] [PubMed] [Google Scholar]
  12. Jaffe E. A., Mosher D. F. Synthesis of fibronectin by cultured human endothelial cells. Ann N Y Acad Sci. 1978 Jun 20;312:122–131. doi: 10.1111/j.1749-6632.1978.tb16797.x. [DOI] [PubMed] [Google Scholar]
  13. Kanoza R. J., Brunette D. M., Purdon A. D., Sodek J. Isolation and identification of epithelial-like cells in culture by a collagenase-separation technique. In Vitro. 1978 Sep;14(9):746–753. doi: 10.1007/BF02617967. [DOI] [PubMed] [Google Scholar]
  14. Keski-Oja J., Mosher D. F., Vaheri A. Dimeric character of fibronectin, a major cell surface-associated glycoprotein. Biochem Biophys Res Commun. 1977 Jan 24;74(2):699–706. doi: 10.1016/0006-291x(77)90359-x. [DOI] [PubMed] [Google Scholar]
  15. Kirkland W. L., Yang N. S., Jorgensen T., Longley C., Furmanski P. Growth of normal and malignant human mammary epithelial cells in culture. J Natl Cancer Inst. 1979 Jul;63(1):29–41. [PubMed] [Google Scholar]
  16. Linder E., Stenman S., Lehto V. P., Vaheri A. Distribution of fibronectin in human tissues and relationship to other connective tissue components. Ann N Y Acad Sci. 1978 Jun 20;312:151–159. doi: 10.1111/j.1749-6632.1978.tb16800.x. [DOI] [PubMed] [Google Scholar]
  17. Lippman M., Bolan G., Huff K. The effects of estrogens and antiestrogens on hormone-responsive human breast cancer in long-term tissue culture. Cancer Res. 1976 Dec;36(12):4595–4601. [PubMed] [Google Scholar]
  18. Lippman M., Bolan G., Huff K. The effects of glucocorticoids and progesterone on hormone-responsive human breast cancer in long-term tissue culture. Cancer Res. 1976 Dec;36(12):4602–4609. [PubMed] [Google Scholar]
  19. Mahdavi V., Hynes R. O. Effects of cocultivation with transformed cells on surface proteins of normal cells. Biochim Biophys Acta. 1978 Aug 17;542(2):191–208. doi: 10.1016/0304-4165(78)90015-6. [DOI] [PubMed] [Google Scholar]
  20. Marceau N., Robert A., Mailhot D. The major surface protein of epithelial cells from newborn and adult rat livers in primary cultures. Biochem Biophys Res Commun. 1977 Apr 25;75(4):1092–1097. doi: 10.1016/0006-291x(77)91494-2. [DOI] [PubMed] [Google Scholar]
  21. Mautner V., Hynes R. O. Surface distribution of LETS protein in relation to the cytoskeleton of normal and transformed cells. J Cell Biol. 1977 Dec;75(3):743–768. doi: 10.1083/jcb.75.3.743. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. McGrath C. M., Blair P. B. Immunofluorescent localization of mammary tumor virus antigens in mammary tumor cells in culture. Cancer Res. 1970 Jul;30(7):1963–1968. [PubMed] [Google Scholar]
  23. Nelson-Rees W. A., Flandermeyer R. R., Hawthorne P. K. Distinctive banded marker chromosomes of human tumor cell lines. Int J Cancer. 1975 Jul 15;16(1):74–82. doi: 10.1002/ijc.2910160109. [DOI] [PubMed] [Google Scholar]
  24. Ossowski L., Quigley J. P., Reich E. Fibrinolysis associated with oncogenic transformation. Morphological correlates. J Biol Chem. 1974 Jul 10;249(13):4312–4320. [PubMed] [Google Scholar]
  25. Ossowski L., Unkeless J. C., Tobia A., Quigley J. P., Rifkin D. B., Reich E. An enzymatic function associated with transformation of fibroblasts by oncogenic viruses. II. Mammalian fibroblast cultures transformed by DNA and RNA tumor viruses. J Exp Med. 1973 Jan 1;137(1):112–126. doi: 10.1084/jem.137.1.112. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Peterson W. D., Jr, Stulberg C. S., Simpson W. F. A permanent heteroploid human cell line with type B glucose-6-phosphate dehydrogenase. Proc Soc Exp Biol Med. 1971 Apr;136(4):1187–1191. doi: 10.3181/00379727-136-35455. [DOI] [PubMed] [Google Scholar]
  27. Russo J., Furmanski P., Bradley R., Wells P., Rich M. A. Differentiation of normal human mammary epithelial cells in culture: an ultrastructural study. Am J Anat. 1976 Jan;145(1):57–77. doi: 10.1002/aja.1001450105. [DOI] [PubMed] [Google Scholar]
  28. Russo J., Soule H. D., McGrath C., Rich M. A. Reexpression of the original tumor pattern by a human breast carcinoma cell line (MCF-7) in sponge culture. J Natl Cancer Inst. 1976 Feb;56(2):279–282. doi: 10.1093/jnci/56.2.279. [DOI] [PubMed] [Google Scholar]
  29. Soule H. D., Vazguez J., Long A., Albert S., Brennan M. A human cell line from a pleural effusion derived from a breast carcinoma. J Natl Cancer Inst. 1973 Nov;51(5):1409–1416. doi: 10.1093/jnci/51.5.1409. [DOI] [PubMed] [Google Scholar]
  30. Stenman S., Vaheri A. Distribution of a major connective tissue protein, fibronectin, in normal human tissues. J Exp Med. 1978 Apr 1;147(4):1054–1064. doi: 10.1084/jem.147.4.1054. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Unkeless J. C., Tobia A., Ossowski L., Quigley J. P., Rifkin D. B., Reich E. An enzymatic function associated with transformation of fibroblasts by oncogenic viruses. I. Chick embryo fibroblast cultures transformed by avian RNA tumor viruses. J Exp Med. 1973 Jan 1;137(1):85–111. doi: 10.1084/jem.137.1.85. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Unkeless J., Dano K., Kellerman G. M., Reich E. Fibrinolysis associated with oncogenic transformation. Partial purification and characterization of the cell factor, a plasminogen activator. J Biol Chem. 1974 Jul 10;249(13):4295–4305. [PubMed] [Google Scholar]
  33. Voyles B. A., Kirkland W. L., Furmanski P., McGrath C. M. Concanavalin A-mediated hemadsorption by normal and malignant human mammary epithelial cells. Cancer Res. 1978 Jun;38(6):1578–1583. [PubMed] [Google Scholar]
  34. Voyles B. A., McGrath C. M. Markers to distinguish normal and neoplastic mammary epithelial cells in vitro: comparison of saturation density, morphology and concanavalin A reactivity. Int J Cancer. 1976 Oct 15;18(4):498–509. doi: 10.1002/ijc.2910180415. [DOI] [PubMed] [Google Scholar]
  35. Wigley C. B., Summerhayes I. C. Loss of LETS protein is not a marker for salivary gland or bladder epithelial cell transformation. Exp Cell Res. 1979 Feb;118(2):394–398. doi: 10.1016/0014-4827(79)90164-2. [DOI] [PubMed] [Google Scholar]
  36. Yamada K. M. Immunological characterization of a major transformation-sensitive fibroblast cell surface glycoprotein. Localization, redistribution, and role in cell shape. J Cell Biol. 1978 Aug;78(2):520–541. doi: 10.1083/jcb.78.2.520. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Yamada K. M., Olden K. Fibronectins--adhesive glycoproteins of cell surface and blood. Nature. 1978 Sep 21;275(5677):179–184. doi: 10.1038/275179a0. [DOI] [PubMed] [Google Scholar]
  38. Yamada K. M., Weston J. A. Isolation of a major cell surface glycoprotein from fibroblasts. Proc Natl Acad Sci U S A. 1974 Sep;71(9):3492–3496. doi: 10.1073/pnas.71.9.3492. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Yamada K. M., Yamada S. S., Pastan I. Quantitation of a transformation-sensitive, adhesive cell surface glycoprotein. Decrease of several untransformed permanent cell lines. J Cell Biol. 1977 Aug;74(2):649–654. doi: 10.1083/jcb.74.2.649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Yang N. S., McGrath C. M., Furmanski P. Presence of a mouse mammary tumor virus-related antigen in human breast carcinoma cells and its absence from normal mammary epithelial cells. J Natl Cancer Inst. 1978 Nov;61(5):1205–1208. doi: 10.1093/jnci/61.5.1205. [DOI] [PubMed] [Google Scholar]
  41. Yang N. S., Soule H. D., McGrath C. M. Expression of murine mammary tumor virus-related antigens in human breast carcinoma (MCF-7) cells. J Natl Cancer Inst. 1977 Nov;59(5):1357–1367. doi: 10.1093/jnci/59.5.1357. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES