Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1980 Feb 1;84(2):261–280. doi: 10.1083/jcb.84.2.261

Rows of dimeric-particles within the axolemma and juxtaposed particles within glia, incorporated into a new model for the paranodal glial- axonal junction at the node of Ranvier

PMCID: PMC2110539  PMID: 7380883

Abstract

Using freeze-fracture techniques, we have analyzed the glial-axonal junction (GAJ) between Schwann cells and axons in the peripheral nervous system, and between oligodendrocytes and axons in the central nervous system of the rat. We have identified a new set of dimeric- particles arranged in circumferential rows within the protoplasmic fracture faces (P-faces) of the paranodal axolemma in the region of glial-axonal juxtaposition. These particles, 260 A in length, composed of two 115-A subunits, are observed in both aldehyde-fixed and nonfixed preparations. The rows of dimeric-particles within the axonal P-face are associated with complementary rows of pits within the external fracture face (E-face) of the paranodal axolemma. These axonal particles are positioned between rows of 160-A particles that occur in both fracture faces of the glial loops in the same region. We observed, in addition to these previously described 160-A particles, a new set of 75-A glial particles within the glial P-faces of the GAJ. These 75-A particles form rows that are centered between the rows of 160-A particles and are therefore superimposed over the rows of dimeric- particles within the paranodal axolemma. Our new findings are interpreted with respect to methods of specimen preparation as well as to a potential role for the paranodal organ in saltatory conduction. We conclude that this particle-rich junction between axon and glia could potentially provide an intricate mechanism for ion exchange between these two cell types.

Full Text

The Full Text of this article is available as a PDF (2.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ABBOTT B. C., HILL A. V., HOWARTH J. V. The positive and negative heat production associated with a nerve impulse. Proc R Soc Lond B Biol Sci. 1958 Feb 18;148(931):149–187. doi: 10.1098/rspb.1958.0012. [DOI] [PubMed] [Google Scholar]
  2. ANDRES K. H. UBER DIE FEINSTRUKTUR BESONDERER EINRICHTUNGEN IN MARKHALTIGEN NERVENFASERN DES KLEINHIRNS DER RATTE. Z Zellforsch Mikrosk Anat. 1965 Feb 24;65:701–712. [PubMed] [Google Scholar]
  3. Agnew W. S., Levinson S. R., Brabson J. S., Raftery M. A. Purification of the tetrodotoxin-binding component associated with the voltage-sensitive sodium channel from Electrophorus electricus electroplax membranes. Proc Natl Acad Sci U S A. 1978 Jun;75(6):2606–2610. doi: 10.1073/pnas.75.6.2606. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. BARGMANN W., LINDNER E. UBER DEN FEINBAU DES NEBENNIERENMARKES DES IGELS (ERINACEUS EUROPAEUS L.) Z Zellforsch Mikrosk Anat. 1964 Dec 3;64:868–912. [PubMed] [Google Scholar]
  5. Blank W. F., Jr, Bunge M. B., Bunge R. P. The sensitivity of the myelin sheath, particularly the Schwann cell-axolemmal junction, to lowered calcium levels in cultured sensory ganglia. Brain Res. 1974 Mar 8;67(3):503–518. doi: 10.1016/0006-8993(74)90498-3. [DOI] [PubMed] [Google Scholar]
  6. Bunge M. B., Bunge R. P., Peterson E. R., Murray M. R. A light and electron microscope study of long-term organized cultures of rat dorsal root ganglia. J Cell Biol. 1967 Feb;32(2):439–466. doi: 10.1083/jcb.32.2.439. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Conti F., Hille B., Neumcke B., Nonner W., Stämpfli R. Conductance of the sodium channel in myelinated nerve fibres with modified sodium inactivation. J Physiol. 1976 Nov;262(3):729–742. doi: 10.1113/jphysiol.1976.sp011617. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Deguchi N., Jorgensen P. L., Maunsbach A. B. Ultrastructure of the sodium pump. Comparison of thin sectioning, negative staining, and freeze-fracture of purified, membrane-bound (Na+,K+)-ATPase. J Cell Biol. 1977 Dec;75(3):619–634. doi: 10.1083/jcb.75.3.619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dempsey G. P., Bullivant S., Watkins W. B. Endothelial cell membranes: polarity of particles as seen by freeze-fracturing. Science. 1973 Jan 12;179(4069):190–192. doi: 10.1126/science.179.4069.190. [DOI] [PubMed] [Google Scholar]
  10. Dermietzel R. Junctions in the central nervous system of the cat. II. A contribution to the tertiary structure of the axonal-glial junctions in the paranodal region of the node of Ranvier. Cell Tissue Res. 1974 May 8;148(4):577–586. doi: 10.1007/BF00221941. [DOI] [PubMed] [Google Scholar]
  11. FRANKENHAEUSER B. [The hypothesis of saltatory conduction]. Cold Spring Harb Symp Quant Biol. 1952;17:27–36. doi: 10.1101/sqb.1952.017.01.005. [DOI] [PubMed] [Google Scholar]
  12. Gross H., Kuebler O., Bas E., Moor H. Decoration of specific sites on freeze-fractured membranes. J Cell Biol. 1978 Dec;79(3):646–656. doi: 10.1083/jcb.79.3.646. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. HILL A. V., HOWARTH J. V. The initial heat production of stimulated nerve. Proc R Soc Lond B Biol Sci. 1958 Dec 4;149(935):167–175. doi: 10.1098/rspb.1958.0059. [DOI] [PubMed] [Google Scholar]
  14. Hirano A., Dembitzer H. M. The transverse bands as a means of access to the periaxonal space of the central myelinated nerve fiber. J Ultrastruct Res. 1969 Jul;28(1):141–149. doi: 10.1016/s0022-5320(69)90012-4. [DOI] [PubMed] [Google Scholar]
  15. Kristol C., Akert K., Sandri C., Wyss U. R., Bennett M. V., Moor H. The Ranvier nodes in the neurogenic electric organ of the knifefish Sternarchus: a freeze-etching study on the distribution of membrane-associated particles. Brain Res. 1977 Apr 15;125(2):197–212. doi: 10.1016/0006-8993(77)90615-1. [DOI] [PubMed] [Google Scholar]
  16. Kristol C., Sandri C., Akert K. Intramembranous particles at the nodes of Ranvier of the cat spinal cord: a morphometric study. Brain Res. 1978 Mar 10;142(3):391–400. doi: 10.1016/0006-8993(78)90903-4. [DOI] [PubMed] [Google Scholar]
  17. Laatsch R. H., Cowan W. M. A structural specialization at nodes of Ranvier in the central nervous system. Nature. 1966 May 14;210(5037):757–758. doi: 10.1038/210757a0. [DOI] [PubMed] [Google Scholar]
  18. Lasansky A. Basal junctions at synaptic endings of turtle visual cells. J Cell Biol. 1969 Feb;40(2):577–581. doi: 10.1083/jcb.40.2.577. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Levinson S. R., Ellory J. C. Molecular size of the tetrodotoxin binding site estimated by irradiation inactivation. Nat New Biol. 1973 Sep 26;245(143):122–123. doi: 10.1038/newbio245122a0. [DOI] [PubMed] [Google Scholar]
  20. Livingston R. B., Pfenniger K., Moor H., Akert K. Specialized paranodal and interparanodal glial-axonal junctions in the peripheral and central nervous system: a freeze-etching study. Brain Res. 1973 Aug 17;58(1):1–24. doi: 10.1016/0006-8993(73)90820-2. [DOI] [PubMed] [Google Scholar]
  21. Müller-Mohnssen H., Tippe A., Hillenkamp F., Unsöld E. Is the rise of the action potential of the ranvier node controlled by a paranodal organ? Naturwissenschaften. 1974 Aug;61(8):369–370. doi: 10.1007/BF00600316. [DOI] [PubMed] [Google Scholar]
  22. Nonner W., Rojas E., Stämpfli R. Gating currents in the node of Ranvier: voltage and time dependence. Philos Trans R Soc Lond B Biol Sci. 1975 Jun 10;270(908):483–492. doi: 10.1098/rstb.1975.0024. [DOI] [PubMed] [Google Scholar]
  23. Rasminsky M., Sears T. A. Internodal conduction in undissected demyelinated nerve fibres. J Physiol. 1972 Dec;227(2):323–350. doi: 10.1113/jphysiol.1972.sp010035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Ritchie J. M., Rogart R. B. Density of sodium channels in mammalian myelinated nerve fibers and nature of the axonal membrane under the myelin sheath. Proc Natl Acad Sci U S A. 1977 Jan;74(1):211–215. doi: 10.1073/pnas.74.1.211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Rosenbluth J. Intramembranous particle distribution at the node of Ranvier and adjacent axolemma in myelinated axons of the frog brain. J Neurocytol. 1976 Dec;5(6):731–745. doi: 10.1007/BF01181584. [DOI] [PubMed] [Google Scholar]
  26. STAMPFLI R. Saltatory conduction in nerve. Physiol Rev. 1954 Jan;34(1):101–112. doi: 10.1152/physrev.1954.34.1.101. [DOI] [PubMed] [Google Scholar]
  27. Sandri C., Van Buren J. M., Akert K. Membrane morphology of the vertebrate nervous system. A study with freeze-etch technique. Prog Brain Res. 1977;46:1–384. [PubMed] [Google Scholar]
  28. Schnapp B., Peracchia C., Mugnaini E. The paranodal axo-glial junction in the central nervous system studied with thin sections and freeze-fracture. Neuroscience. 1976 Jun;1(3):181–190. doi: 10.1016/0306-4522(76)90075-0. [DOI] [PubMed] [Google Scholar]
  29. Wood J. G., Jean D. H., Whitaker J. N., McLaughlin B. J., Albers R. W. Immunocytochemical localization of the sodium, potassium activated ATPase in knifefish brain. J Neurocytol. 1977 Oct;6(5):571–581. doi: 10.1007/BF01205220. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES