Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1980 Feb 1;84(2):246–260. doi: 10.1083/jcb.84.2.246

A morphological study of plasma and phagosome membranes during endocytosis in Acanthamoeba

PMCID: PMC2110541  PMID: 6991507

Abstract

Particle ingestion by Acanthamoeba is rapid. Within 40 s bound particles can be surrounded by pseudopods, brought into the cytoplasm, and released as phagosomes into the cytoplasmic stream. In electron micrographs the phagosome appears as a flasklike invagination of the surface. Separation from the surface occurs by fragmentation of the attenuated "neck+ of the invagination. The separated phagosome membrane has a three- to fourfold greater density of intramembrane particles than the plasma membrane from which it derives. This change is evident within 15 min of ingestion and is detectable while the membrane is still tightly apposed to the particle. There is no direct evidence for the mechanism of this increase; no increase in particle density was seen in the membrane at an early stage in the forming phagosomes still connected to the surface. These morphological observations are consistent with chemical analyses, to be reported in a separate communication, that show that the phagosome membrane has a higher protein to phospholipid ratio and a higher glycosphingolipid content than the plasma membrane. Enlarged phagosomes (presumptive phagolysosomes) show multiple small vesiculations of characteristic morphology. The small vesicles are postulated to be the major route of membrane return to the cell surface.

Full Text

The Full Text of this article is available as a PDF (2.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen R. D. Food vacuole membrane growth with microtubule-associated membrane transport in Paramecium. J Cell Biol. 1974 Dec;63(3):904–922. doi: 10.1083/jcb.63.3.904. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Allen R. D., Wolf R. W. The cytoproct of Paramecium caudatum: structure and function, microtubules, and fate of food vacuole membranes. J Cell Sci. 1974 May;14(3):611–631. doi: 10.1242/jcs.14.3.611. [DOI] [PubMed] [Google Scholar]
  3. Batz W., Wunderlich F. Structural transformation of the phagosomal membrane in Tetrahymena cells endocytosing latex beads. Arch Microbiol. 1976 Sep 1;109(3):215–250. doi: 10.1007/BF00446631. [DOI] [PubMed] [Google Scholar]
  4. Bowers B. Comparison of pinocytosis and phagocytosis in Acanthamoeba castellanii. Exp Cell Res. 1977 Dec;110(2):409–417. doi: 10.1016/0014-4827(77)90307-x. [DOI] [PubMed] [Google Scholar]
  5. Bowers B., Korn E. D. The fine structure of Acanthamoeba castellanii. I. The trophozoite. J Cell Biol. 1968 Oct;39(1):95–111. doi: 10.1083/jcb.39.1.95. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bowers B., Olszewski T. E. Pinocytosis in Acanthamoeba castellanii. Kinetics and morphology. J Cell Biol. 1972 Jun;53(3):681–694. doi: 10.1083/jcb.53.3.681. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Graham R. C., Jr, Karnovsky M. J. The early stages of absorption of injected horseradish peroxidase in the proximal tubules of mouse kidney: ultrastructural cytochemistry by a new technique. J Histochem Cytochem. 1966 Apr;14(4):291–302. doi: 10.1177/14.4.291. [DOI] [PubMed] [Google Scholar]
  8. Heuser J. E., Reese T. S. Evidence for recycling of synaptic vesicle membrane during transmitter release at the frog neuromuscular junction. J Cell Biol. 1973 May;57(2):315–344. doi: 10.1083/jcb.57.2.315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kitajima Y., Thompson G. A., Jr Differentiation of food vacuolar membranes during endocytosis in Tetrahymena. J Cell Biol. 1977 Nov;75(2 Pt 1):436–445. doi: 10.1083/jcb.75.2.436. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kloetzel J. A. Feeding in ciliated protozoa. I. Pharyngeal disks in Euplotes: a source of membrane for food vacuole formation? J Cell Sci. 1974 Jul;15(2):379–401. doi: 10.1242/jcs.15.2.379. [DOI] [PubMed] [Google Scholar]
  11. Korn E. D., Bowers B., Batzri S., Simmons S. R., Victoria E. J. Endycytosis and exocytosis: role of microfilaments and involvement of phospholipids in membrane fusion. J Supramol Struct. 1974;2(5-6):517–528. doi: 10.1002/jss.400020502. [DOI] [PubMed] [Google Scholar]
  12. McKanna J. A. Cyclic membrane flow in the ingestive-digestive system of peritrich protozoans. I. Vesicular fusion at the cytopharynx. J Cell Sci. 1973 Nov;13(3):663–675. doi: 10.1242/jcs.13.3.663. [DOI] [PubMed] [Google Scholar]
  13. Moore P. L., Bank H. L., Brissie N. T., Spicer S. S. Phagocytosis of bacteria by polymorphonuclear leukocytes. A freeze-fracture, scanning electron microscope, and thin-section investigation of membrane structure. J Cell Biol. 1978 Jan;76(1):158–174. doi: 10.1083/jcb.76.1.158. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Oliver J. M., Ukena T. E., Berlin R. D. Effects of phagocytosis and colchicine on the distribution of lectin-binding sites on cell surfaces. Proc Natl Acad Sci U S A. 1974 Feb;71(2):394–398. doi: 10.1073/pnas.71.2.394. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Pelletier G. Secretion and uptake of peroxidase by rat adenohypophyseal cells. J Ultrastruct Res. 1973 Jun;43(5):445–459. doi: 10.1016/s0022-5320(73)90021-x. [DOI] [PubMed] [Google Scholar]
  16. Ryter A., Bowers B. Localization of acid phosphatase in Acanthamoeba castellanii with light and electron microscopy during growth and after phagocytosis. J Ultrastruct Res. 1976 Dec;57(3):309–321. doi: 10.1016/s0022-5320(76)80119-0. [DOI] [PubMed] [Google Scholar]
  17. Steinman R. M., Brodie S. E., Cohn Z. A. Membrane flow during pinocytosis. A stereologic analysis. J Cell Biol. 1976 Mar;68(3):665–687. doi: 10.1083/jcb.68.3.665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Verkleij A. J., Momvers C., Leunissen-Bijvelt J., Ververgaert P. H. Lipidic intramembranous particles. Nature. 1979 May 10;279(5709):162–163. doi: 10.1038/279162a0. [DOI] [PubMed] [Google Scholar]
  19. Weisman R. A., Korn E. D. Phagocytosis of latex beads by Acanthamoeba. I. Biochemical properties. Biochemistry. 1967 Feb;6(2):485–497. doi: 10.1021/bi00854a017. [DOI] [PubMed] [Google Scholar]
  20. Wetzel M. G., Korn E. D. Phagocytosis of latex beads by Acahamoeba castellanii (Neff). 3. Isolation of the phagocytic vesicles and their membranes. J Cell Biol. 1969 Oct;43(1):90–104. doi: 10.1083/jcb.43.1.90. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. van Alphen L., Verkleij A., Leunissen-Bijvelt J., Lugtenberg B. Architecture of the outer membrane of Escherichia coli. III. Protein-lipopolysaccharide complexes in intramembraneous particles. J Bacteriol. 1978 Jun;134(3):1089–1098. doi: 10.1128/jb.134.3.1089-1098.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES