Abstract
Acyltransferase activity is present in a variety of membranes species, including liver microsomes. The substrates of this enzyme are lysophosphatides and acyl CoA derivatives. We have found that the detergent effect of these substrates can be used to solubilize rat liver microsomes. If the solubilized fraction in incubated, the acyltransferase acylates the lysophosphatide and thereby degrades the detergent effect so that vesicular membranes re-form. Gel electrophoresis patterns show that the reconstituted membranes contain all of the major protein components of the original microsomes. A marker enzyme for liver microsomes, NADPH-cytochrome c reductase, was present in the reconstituted membranes at 70% of the specific activity in the original microsomes, and freeze-fracture electron microscopy showed intramembrane particles on all fracture faces. The system may provide a useful model for studies particles on all fracture faces. This system may provide a useful model for studies of certain membrane biogenesis reactions that utilize acyltransferase in vivo.
Full Text
The Full Text of this article is available as a PDF (619.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
- Brumley G., van den Bosch H. Lysophospholipase--transacylase from rat lung: isolation and partial purification. J Lipid Res. 1977 Jul;18(4):523–532. [PubMed] [Google Scholar]
- Chevalier G., Collet A. J. In vivo incorporation of choline- 3 H, leucine- 3 H and galactose- 3 H in alveolar type II pneumocytes in relation to surfactant synthesis. A quantitative radoautographic study in mouse by electron microscopy. Anat Rec. 1972 Nov;174(3):289–310. doi: 10.1002/ar.1091740303. [DOI] [PubMed] [Google Scholar]
- Das S. K., Banerjee A. B. Lipolytic enzymes of Trichophyton rubrum. Sabouraudia. 1977 Nov;15(3):313–323. [PubMed] [Google Scholar]
- Devor K. A., Mudd J. B. Control of fatty acid distribution in phosphatidylcholine of spinach leaves. J Lipid Res. 1971 Jul;12(4):412–419. [PubMed] [Google Scholar]
- Eibl H., Hill E. E., Lands W. E. The subcellular distribution of acyltransferases which catalyze the synthesis of phosphoglycerides. Eur J Biochem. 1969 Jun;9(2):250–258. doi: 10.1111/j.1432-1033.1969.tb00602.x. [DOI] [PubMed] [Google Scholar]
- Fairbanks G., Steck T. L., Wallach D. F. Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane. Biochemistry. 1971 Jun 22;10(13):2606–2617. doi: 10.1021/bi00789a030. [DOI] [PubMed] [Google Scholar]
- Ferber E., De Pasquale G. G., Resch K. Phospholipid metabolism of stimulated lymphocytes. Composition of phospholipid fatty acids. Biochim Biophys Acta. 1975 Sep 19;398(3):364–376. doi: 10.1016/0005-2760(75)90187-3. [DOI] [PubMed] [Google Scholar]
- Ferber E., Reilly C. E., Resch K. Phospholipid metabolism of stimulated lymphocytes. Comparison of the activation of acyl-CoA:lysolecithin acyltransferase with the binding of concanavalin A to thymocytes. Biochim Biophys Acta. 1976 Sep 21;448(1):143–154. doi: 10.1016/0005-2736(76)90083-3. [DOI] [PubMed] [Google Scholar]
- Ferber E., Resch K. Phospholipid metabolism of stimulated lymphocytes: activation of acyl-CoA:lysolecithin acyltransferases in microsomal membranes. Biochim Biophys Acta. 1973 Feb 14;296(2):335–349. doi: 10.1016/0005-2760(73)90092-1. [DOI] [PubMed] [Google Scholar]
- Fisher K., Branton D. Application of the freeze-fracture technique to natural membranes. Methods Enzymol. 1974;32:35–44. doi: 10.1016/0076-6879(74)32006-x. [DOI] [PubMed] [Google Scholar]
- Fujita T., Shoeman D. W., Mannering G. J. Differences in P-450 cytochromes from livers of rats treated with phenobarbital and with 3-methylcholanthrene. J Biol Chem. 1973 Mar 25;248(6):2192–2201. [PubMed] [Google Scholar]
- Glabe C. G., Vacquier V. D. Isolation and characterization of the vitelline layer of sea urchin eggs. J Cell Biol. 1977 Nov;75(2 Pt 1):410–421. doi: 10.1083/jcb.75.2.410. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heckman C. A., Friedman S. J., Skehan P. J., Barrnett R. J. Localization and partial characterization of acyltransferases present during rapid membrane formation in the Drosophila melanogaster embryo. Dev Biol. 1977 Jan;55(1):9–32. doi: 10.1016/0012-1606(77)90316-5. [DOI] [PubMed] [Google Scholar]
- Helenius A., Simons K. Solubilization of membranes by detergents. Biochim Biophys Acta. 1975 Mar 25;415(1):29–79. doi: 10.1016/0304-4157(75)90016-7. [DOI] [PubMed] [Google Scholar]
- Junger E., Hahn M. H., Reinauer H. The structure of lysolecithin-water phases. Negative staining and optical diffraction analysis of the electron micrographs. Biochim Biophys Acta. 1970 Sep 15;211(3):381–388. doi: 10.1016/0005-2736(70)90243-9. [DOI] [PubMed] [Google Scholar]
- Kelker H. C., Pullman M. E. Phospholipid requirement of acyl coenzyme A:sn-glycerol-3-phosphate acyltransferase from rat liver mitochondria. J Biol Chem. 1979 Jun 25;254(12):5364–5371. [PubMed] [Google Scholar]
- LANDS W. E. Metabolism of glycerolipids. 2. The enzymatic acylation of lysolecithin. J Biol Chem. 1960 Aug;235:2233–2237. [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Levine A. M., Higgins J. A., Barrnett R. J. Biogenesis of plasma membranes in salt glands of salt-stressed domestic ducklings: localization of acyltransferase activity. J Cell Sci. 1972 Nov;11(3):855–873. doi: 10.1242/jcs.11.3.855. [DOI] [PubMed] [Google Scholar]
- Proulx P. R., van Deenen L. L. Acylation of lysophosphoglycerides by Escherichia coli. Biochim Biophys Acta. 1966 Dec 7;125(3):591–593. doi: 10.1016/0005-2760(66)90046-4. [DOI] [PubMed] [Google Scholar]
- Reitz R. C., Lands W. E., Christie W. W., Holman R. T. Effects of ethylenic bond position upon acyltransferase activity with isomeric cis,cis-octadecadienoyl coenzyme A thiol esters. J Biol Chem. 1968 May 10;243(9):2241–2246. [PubMed] [Google Scholar]
- Small D. M. A classification of biologic lipids based upon their interaction in aqeous systems. J Am Oil Chem Soc. 1968 Mar;45(3):108–119. doi: 10.1007/BF02915334. [DOI] [PubMed] [Google Scholar]
- Tsao F. H., Zachman R. D. Phosphatidylcholine-lysophosphatidylcholine cycle pathway enzymes in rabbit lung. I. Subcellular localization and properties. Pediatr Res. 1977 Jul;11(7):849–857. doi: 10.1203/00006450-197707000-00015. [DOI] [PubMed] [Google Scholar]
- Tsao F. H., Zachman R. D. Phosphatidylcholine-lysophosphatidylcholine cycle pathway enzymes in rabbit lung. II. Marked differences in the effect of gestational age on activity compared to the CDP-choline pathway. Pediatr Res. 1977 Jul;11(7):858–861. doi: 10.1203/00006450-197707000-00016. [DOI] [PubMed] [Google Scholar]
- Vianen G. M., van den Bosch H. Lysophospholipase and lysophosphatidylcholine:lysophosphatidylcholine transacylase from rat lung: evidence for a single enzyme and some aspects of its specificity. Arch Biochem Biophys. 1978 Oct;190(2):373–378. doi: 10.1016/0003-9861(78)90290-4. [DOI] [PubMed] [Google Scholar]
- van den Bosch H., van Golde L. M., van Deenen L. L. Dynamics of phosphoglycerides. Ergeb Physiol. 1972;66:13–145. doi: 10.1007/3-540-05882-6_2. [DOI] [PubMed] [Google Scholar]