Abstract
Freeze-fracture of rapidly frozen, untreated plant cells reveals terminal complexes on E-fracture faces and intramembrane particle rosettes on P-fracture faces. Terminal complexes and rosettes are associated with the ends of individual microfibril impressions on the plasma membrane. In addition, terminal complexes and rosettes are associated with the impressions of new orientations of microfibrils. These structures are sparse within pit fields where few microfibril impressions are observed, but are abundant over adjacent impressions of microfibrils. It is proposed that intramembrane rosettes function in association with terminal complexes to synthesize microfibrils. The presence of a cellulosic microfibril system in Zea mays root segments is confirmed by degradation experiments with Trichoderma cellulase.
Full Text
The Full Text of this article is available as a PDF (1.6 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Brown R. M., Jr, Montezinos D. Cellulose microfibrils: visualization of biosynthetic and orienting complexes in association with the plasma membrane. Proc Natl Acad Sci U S A. 1976 Jan;73(1):143–147. doi: 10.1073/pnas.73.1.143. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brown R. M., Jr, Willison J. H., Richardson C. L. Cellulose biosynthesis in Acetobacter xylinum: visualization of the site of synthesis and direct measurement of the in vivo process. Proc Natl Acad Sci U S A. 1976 Dec;73(12):4565–4569. doi: 10.1073/pnas.73.12.4565. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Costello M. J., Corless J. M. The direct measurement of temperature changes within freeze-fracture specimens during rapid quenching in liquid coolants. J Microsc. 1978 Jan;112(1):17–37. doi: 10.1111/j.1365-2818.1978.tb01151.x. [DOI] [PubMed] [Google Scholar]
- Gross H., Bas E., Moor H. Freeze-fracturing in ultrahigh vacuum at -196 degrees C. J Cell Biol. 1978 Mar;76(3):712–728. doi: 10.1083/jcb.76.3.712. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Montezinos D., Brown M., Jr Surface architecture of the plant cell: biogenesis of the cell wall, with special emphasis on the role of the plasma membrane in cellulose biosynthesis. J Supramol Struct. 1976;5(3):277–290. doi: 10.1002/jss.400050303. [DOI] [PubMed] [Google Scholar]
- Mueller S. C., Brown R. M., Jr, Scott T. K. Cellulosic microfibrils: nascent stages of synthesis in a higher plant cell. Science. 1976 Nov 26;194(4268):949–951. doi: 10.1126/science.194.4268.949. [DOI] [PubMed] [Google Scholar]
- Pinto da Silva P., Nogueira M. L. Membrane fusion during secretion. A hypothesis based on electron microscope observation of Phytophthora Palmivora zoospores during encystment. J Cell Biol. 1977 Apr;73(1):161–181. doi: 10.1083/jcb.73.1.161. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Raymond Y., Fincher G. B., Maclachlan G. A. Tissue Slice and Particulate beta-Glucan Synthetase Activities from Pisum Epicotyls. Plant Physiol. 1978 Jun;61(6):938–942. doi: 10.1104/pp.61.6.938. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Satir B. Membrane events during the secretory process. Symp Soc Exp Biol. 1974;(28):399–418. [PubMed] [Google Scholar]
- Spurr A. R. A low-viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res. 1969 Jan;26(1):31–43. doi: 10.1016/s0022-5320(69)90033-1. [DOI] [PubMed] [Google Scholar]
- Willison J. H., Brown R. M., Jr Cell wall structure and deposition in Glaucocystis. J Cell Biol. 1978 Apr;77(1):103–119. doi: 10.1083/jcb.77.1.103. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zaar K. Visualization of pores (export sites) correlated with cellulose production in the envelope of the gram-negative bacterium Acetobacter xylinum. J Cell Biol. 1979 Mar;80(3):773–777. doi: 10.1083/jcb.80.3.773. [DOI] [PMC free article] [PubMed] [Google Scholar]