Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1980 Feb 1;84(2):381–403. doi: 10.1083/jcb.84.2.381

Microtubule-membrane interactions in cilia. II. Photochemical cross- linking of bridge structures and the identification of a membrane- associated dynein-like ATPase

PMCID: PMC2110547  PMID: 6445910

Abstract

Photochemical cross-linking of both Tetrahymena and Aequipecten ciliary membrane proteins with the lipophilic reagent 4,4'-dithiobisphenylazide links together a high molecular weight dynein-like ATPase, membrane tubulin, and at least two other proteins. Electron microscopy of detergent-extracted cilia reveals that the cross-linked complex remains attached to the outer-doublet microtubules by a microtubule-membrane bridge. Cleavage of the reagent's disulfide bond releases the bridge- membrane complex and the dynein-like membrane-associated ATPase. Electron microscopy was used to ensure that the dynein-like protein did not result from the solubilization of the dynein arms attached to the outer-doublet microtubules. The dynein-like protein has been isolated using sucrose gradients and is similar to axonemal dynein with respect to its sedimentation characteristics nucleotide specificity, and divalent cation requirements. Photochemical cross-linking of ciliary membrane porteins in vivo results initially in the modification of ciliary beat and, eventually, in the cessation of ciliary movement. These results suggest that a dynein-like ATPase comprises the bridge which links the ciliary membrane to the outer-doublet microtubules and that this bridge is involved in the modulation of normal ciliary movement.

Full Text

The Full Text of this article is available as a PDF (2.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen R. D. A reinvestigation of cross-sections of cilia. J Cell Biol. 1968 Jun;37(3):825–831. doi: 10.1083/jcb.37.3.825. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Allen R. D. Evidence for firm linkages between microtubules and membrane-bounded vesicles. J Cell Biol. 1975 Feb;64(2):497–503. doi: 10.1083/jcb.64.2.497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bayley H., Knowles J. R. Photogenerated reagents for membrane labeling. 1. Phenylnitrene formed within the lipid bilayer. Biochemistry. 1978 Jun 13;17(12):2414–2419. doi: 10.1021/bi00605a025. [DOI] [PubMed] [Google Scholar]
  4. Bird M. M. Microtubule--synaptic vesicle associations in cultured rat spinal cord neurons. Cell Tissue Res. 1976 Apr 28;168(1):101–115. doi: 10.1007/BF00219727. [DOI] [PubMed] [Google Scholar]
  5. Bloodgood R. A. Motility occurring in association with the surface of the Chlamydomonas flagellum. J Cell Biol. 1977 Dec;75(3):983–989. doi: 10.1083/jcb.75.3.983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Burton P. R. Some structural and cytochemical observations on the axial filament complex of lung-fluke spermatozoa. J Morphol. 1973 Jun;140(2):185–195. doi: 10.1002/jmor.1051400206. [DOI] [PubMed] [Google Scholar]
  7. Dentler W. L., Cunningham W. P. Structure and organization of radial spokes in cilia of Tetrahymena pyriformis. J Morphol. 1977 Jul;153(1):143–151. doi: 10.1002/jmor.1051530110. [DOI] [PubMed] [Google Scholar]
  8. Dentler W. L. Fine structural localization of phosphatases in cilia and basal bodies of Tetrahymena pyriformis. Tissue Cell. 1977;9(2):209–222. doi: 10.1016/0040-8166(77)90017-9. [DOI] [PubMed] [Google Scholar]
  9. Dentler W. L., Granett S., Rosenbaum J. L. Ultrastructural localization of the high molecular weight proteins associated with in vitro-assembled brain microtubules. J Cell Biol. 1975 Apr;65(1):237–241. doi: 10.1083/jcb.65.1.237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Dentler W. L., Rosenbaum J. L. Flagellar elongation and shortening in Chlamydomonas. III. structures attached to the tips of flagellar microtubules and their relationship to the directionality of flagellar microtubule assembly. J Cell Biol. 1977 Sep;74(3):747–759. doi: 10.1083/jcb.74.3.747. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Fairbanks G., Steck T. L., Wallach D. F. Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane. Biochemistry. 1971 Jun 22;10(13):2606–2617. doi: 10.1021/bi00789a030. [DOI] [PubMed] [Google Scholar]
  12. Franke W. W. Cytoplasmic microtubules linked to endoplasmic reticulum with cross-bridges. Exp Cell Res. 1971 Jun;66(2):486–489. doi: 10.1016/0014-4827(71)90705-1. [DOI] [PubMed] [Google Scholar]
  13. Freed J. J., Lebowitz M. M. The association of a class of saltatory movements with microtubules in cultured cells. J Cell Biol. 1970 May;45(2):334–354. doi: 10.1083/jcb.45.2.334. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. GIBBONS I. R. REACTIVATION OF GLYCERINATED CILIA FROM TETRAHYMENA PYRIFORMIS. J Cell Biol. 1965 May;25:400–402. doi: 10.1083/jcb.25.2.400. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Gibbons B. H., Gibbons I. R. Flagellar movement and adenosine triphosphatase activity in sea urchin sperm extracted with triton X-100. J Cell Biol. 1972 Jul;54(1):75–97. doi: 10.1083/jcb.54.1.75. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Gibbons I. R. Chemical dissection of cilia. Arch Biol (Liege) 1965;76(2):317–352. [PubMed] [Google Scholar]
  17. Gibbons I. R., Cosson M. P., Evans J. A., Gibbons B. H., Houck B., Martinson K. H., Sale W. S., Tang W. J. Potent inhibition of dynein adenosinetriphosphatase and of the motility of cilia and sperm flagella by vanadate. Proc Natl Acad Sci U S A. 1978 May;75(5):2220–2224. doi: 10.1073/pnas.75.5.2220. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Gibbons I. R., Fronk E. Some properties of bound and soluble dynein from sea urchin sperm flagella. J Cell Biol. 1972 Aug;54(2):365–381. doi: 10.1083/jcb.54.2.365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Gibbons I. R. Studies on the adenosine triphosphatase activity of 14 S and 30 S dynein from cilia of Tetrahymena. J Biol Chem. 1966 Dec 10;241(23):5590–5596. [PubMed] [Google Scholar]
  20. Gibbons I. R. The molecular basis of flagellar motility in sea urchin spermatozoa. Soc Gen Physiol Ser. 1975;30:207–232. [PubMed] [Google Scholar]
  21. Kincaid H. L., Jr, Gibbons B. H., Gibbons I. R. The salt-extractable fraction of dynein from sea urchin sperm flagella: an analysis by gel electrophoresis and by adenosine triphosphatase activity. J Supramol Struct. 1973;1(6):461–470. doi: 10.1002/jss.400010603. [DOI] [PubMed] [Google Scholar]
  22. LANSING A. I., LAMY F. Localization of ATPase in rotifer cilia. J Biophys Biochem Cytol. 1961 Nov;11:498–501. doi: 10.1083/jcb.11.2.498. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  24. La Fountain J. R., Jr An association between microtubules and aligned mitochondria in Nephrotoma spermatocytes. Exp Cell Res. 1972;71(2):325–328. doi: 10.1016/0014-4827(72)90300-x. [DOI] [PubMed] [Google Scholar]
  25. Linck R. W. Chemical and structural differences between cilia and flagella from the lamellibranch mollusc, Aequipecten irradians. J Cell Sci. 1973 May;12(3):951–981. doi: 10.1242/jcs.12.3.951. [DOI] [PubMed] [Google Scholar]
  26. Malaisse W. J., Malaisse-Lagae F., Van Obberghen E., Somers G., Devis G., Ravazzola M., Orci L. Role of microtubules in the phasic pattern of insulin release. Ann N Y Acad Sci. 1975 Jun 30;253:630–652. doi: 10.1111/j.1749-6632.1975.tb19234.x. [DOI] [PubMed] [Google Scholar]
  27. Mikkelsen R. B., Wallach D. F. Photoactivated cross-linking of proteins within the erythrocyte membrane core. J Biol Chem. 1976 Dec 10;251(23):7413–7416. [PubMed] [Google Scholar]
  28. Murphy D. B., Borisy G. G. Association of high-molecular-weight proteins with microtubules and their role in microtubule assembly in vitro. Proc Natl Acad Sci U S A. 1975 Jul;72(7):2696–2700. doi: 10.1073/pnas.72.7.2696. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Naito Y., Kaneko H. Reactivated triton-extracted models o paramecium: modification of ciliary movement by calcium ions. Science. 1972 May 5;176(4034):523–524. doi: 10.1126/science.176.4034.523. [DOI] [PubMed] [Google Scholar]
  30. Olson G. E., Linck R. W. Observations of the structural components of flagellar axonemes and central pair microtubules from rat sperm. J Ultrastruct Res. 1977 Oct;61(1):21–43. doi: 10.1016/s0022-5320(77)90004-1. [DOI] [PubMed] [Google Scholar]
  31. Orci L., Like A. A., Amherdt M., Blondel B., Kanazawa Y., Marliss E. B., Lambert A. E., Wollheim C. B., Renold A. E. Monolayer cell culture of neonatal rat pancreas: an ultrastructural and biochemical study of functioning endocrine cells. J Ultrastruct Res. 1973 May;43(3):270–297. doi: 10.1016/s0022-5320(73)80039-5. [DOI] [PubMed] [Google Scholar]
  32. Peters K., Richards F. M. Chemical cross-linking: reagents and problems in studies of membrane structure. Annu Rev Biochem. 1977;46:523–551. doi: 10.1146/annurev.bi.46.070177.002515. [DOI] [PubMed] [Google Scholar]
  33. Poisner A. M., Cooke P. Microtubules and the adrenal medulla. Ann N Y Acad Sci. 1975 Jun 30;253:653–669. doi: 10.1111/j.1749-6632.1975.tb19235.x. [DOI] [PubMed] [Google Scholar]
  34. Pollard T. D., Korn E. D. Acanthamoeba myosin. I. Isolation from Acanthamoeba castellanii of an enzyme similar to muscle myosin. J Biol Chem. 1973 Jul 10;248(13):4682–4690. [PubMed] [Google Scholar]
  35. Ringo D. L. Flagellar motion and fine structure of the flagellar apparatus in Chlamydomonas. J Cell Biol. 1967 Jun;33(3):543–571. doi: 10.1083/jcb.33.3.543. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Sattler C. A., Staehelin L. A. Ciliary membrane differentiations in Tetrahymena pyriformis. Tetrahymena has four types of cilia. J Cell Biol. 1974 Aug;62(2):473–490. doi: 10.1083/jcb.62.2.473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Sherline P., Lee Y. C., Jacobs L. S. Binding of microtubules to pituitary secretory granules and secretory granule membranes. J Cell Biol. 1977 Feb;72(2):380–389. doi: 10.1083/jcb.72.2.380. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Smith D. S., Järlfors U., Cameron B. F. Morphological evidence for the participation of microtubules in axonal transport. Ann N Y Acad Sci. 1975 Jun 30;253:472–506. doi: 10.1111/j.1749-6632.1975.tb19223.x. [DOI] [PubMed] [Google Scholar]
  39. Smith D. S. On the significance of cross-bridges between microtubules and synaptic vesicles. Philos Trans R Soc Lond B Biol Sci. 1971 Jun 17;261(839):395–405. doi: 10.1098/rstb.1971.0074. [DOI] [PubMed] [Google Scholar]
  40. Stephens R. E. High-resolution preparative SDS-polyacrylamide gel electrophoresis: fluorescent visualization and electrophoretic elution-concentration of protein bands. Anal Biochem. 1975 May 12;65(1-2):369–379. doi: 10.1016/0003-2697(75)90521-7. [DOI] [PubMed] [Google Scholar]
  41. Stephens R. E. Major membrane protein differences in cilia and flagella: evidence for a membrane-associated tubulin. Biochemistry. 1977 May 17;16(10):2047–2058. doi: 10.1021/bi00629a001. [DOI] [PubMed] [Google Scholar]
  42. Thompson G. A., Jr, Baugh L. C., Walker L. F. Nonlethal deciliation of Tetrahymena by a local anesthetic and its utility as a tool for studying cilia regeneration. J Cell Biol. 1974 Apr;61(1):253–257. doi: 10.1083/jcb.61.1.253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Warner F. D., Satir P. The structural basis of ciliary bend formation. Radial spoke positional changes accompanying microtubule sliding. J Cell Biol. 1974 Oct;63(1):35–63. doi: 10.1083/jcb.63.1.35. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Watanabe T., Flavin M. Two types of adenosine triphosphatase from flagella of Chlamydomonas reinhardi. Biochem Biophys Res Commun. 1973 May 1;52(1):195–201. doi: 10.1016/0006-291x(73)90973-x. [DOI] [PubMed] [Google Scholar]
  45. Witman G. B., Carlson K., Berliner J., Rosenbaum J. L. Chlamydomonas flagella. I. Isolation and electrophoretic analysis of microtubules, matrix, membranes, and mastigonemes. J Cell Biol. 1972 Sep;54(3):507–539. doi: 10.1083/jcb.54.3.507. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES