Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1980 Mar 1;84(3):633–654. doi: 10.1083/jcb.84.3.633

Intermediate-sized filaments of the prekeratin type in myoepithelial cells

PMCID: PMC2110574  PMID: 6153658

Abstract

Myoepithelial cells from mammary glands, the modified sweat glands of bovine muzzle, and salivary glands have been studied by electron microscopy and by immunofluorescence microscopy in frozen sections in an attempt to further characterize the type of intermediate-sized filaments present in these cells. Electron microscopy has shown that all myoepithelial cells contain extensive meshworks of intermediate- sized (7--11-nm) filaments, many of which are anchored at typical desmosomes or hemidesmosomes. The intermediate-sized filaments are also intimately associated with masses of contractile elements, identified as bundles of typical 5--6-nm microfilaments and with characteristically spaced dense bodies. This organization resembles that described for various smooth muscle cells. In immunofluorescence microscopy, using antibodies specific for the various classes of intermediate-sized filaments, the myoepithelial cells are strongly decorated by antibodies to prekeratin. They are not specifically stained by antibodies to vimentin, which stain mesenchymal cells, nor by antibodies to chick gizzard desmin, which decorate fibrils in smooth muscle Z bands and intercalated disks in skeletal and cardiac muscle of mammals. Myoepithelial cells are also strongly stained by antibodies to actin. The observations show (a) that the epithelial character, as indicated by the presence of intermediate-sized filaments of the prekeratin type, is maintained in the differentiated contractile myoepithelial cell, and (b) that desmin and desmin-containing filaments are not generally associated with musclelike cell specialization for contraction but are specific to myogenic differentiation. The data also suggest that in myoepithelial cells prekeratin filaments are arranged-- and might function--in a manner similar to the desmin filaments in smooth muscle cells.

Full Text

The Full Text of this article is available as a PDF (2.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahmed A. The myoepithelium in human breast fibroadenoma. J Pathol. 1974 Nov;114(3):135–138. doi: 10.1002/path.1711140305. [DOI] [PubMed] [Google Scholar]
  2. Archer F. L., Kao V. C. Immunohistochemical identification of actomyosin in myoepithelium of human tissues. Lab Invest. 1968 Jun;18(6):669–674. [PubMed] [Google Scholar]
  3. Behrendt H. Effect of anabolic steroids on rat heart muscle cells. I. Intermediate filaments. Cell Tissue Res. 1977 May 31;180(3):303–315. doi: 10.1007/BF00227598. [DOI] [PubMed] [Google Scholar]
  4. Bennett D. C., Peachey L. A., Durbin H., Rudland P. S. A possible mammary stem cell line. Cell. 1978 Sep;15(1):283–298. doi: 10.1016/0092-8674(78)90104-6. [DOI] [PubMed] [Google Scholar]
  5. Bennett G. S., Fellini S. A., Croop J. M., Otto J. J., Bryan J., Holtzer H. Differences among 100-A filamentilament subunits from different cell types. Proc Natl Acad Sci U S A. 1978 Sep;75(9):4364–4368. doi: 10.1073/pnas.75.9.4364. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Blomberg F., Cohen R. S., Siekevitz P. The structure of postsynaptic densities isolated from dog cerebral cortex. II. Characterization and arrangement of some of the major proteins within the structure. J Cell Biol. 1977 Jul;74(1):204–225. doi: 10.1083/jcb.74.1.204. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Brownscheidle C. M., Niewenhuis R. J. Ultrastructure of the harderian gland in male albino rats. Anat Rec. 1978 Mar;190(3):735–753. doi: 10.1002/ar.1091900309. [DOI] [PubMed] [Google Scholar]
  8. Bruder G., Fink A., Jarasch E. D. The B-type cytochrome in endoplasmic reticulum of mammary gland epithelium and milk fat globule membranes consists of two components cytochrome b5 and cytochrome P-420. Exp Cell Res. 1978 Nov;117(1):207–217. doi: 10.1016/0014-4827(78)90443-3. [DOI] [PubMed] [Google Scholar]
  9. Cooke P. A filamentous cytoskeleton in vertebrate smooth muscle fibers. J Cell Biol. 1976 Mar;68(3):539–556. doi: 10.1083/jcb.68.3.539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Drenckhahn D., Gröschel-Stewart U., Unsicker K. Immunofluorescence-microscopic demonstration of myosin and actin in salivary glands and exocrine pancreas of the rat. Cell Tissue Res. 1977 Sep 26;183(2):273–279. doi: 10.1007/BF00226624. [DOI] [PubMed] [Google Scholar]
  11. Drochmans P., Freudenstein C., Wanson J. C., Laurent L., Keenan T. W., Stadler J., Leloup R., Franke W. W. Structure and biochemical composition of desmosomes and tonofilaments isolated from calf muzzle epidermis. J Cell Biol. 1978 Nov;79(2 Pt 1):427–443. doi: 10.1083/jcb.79.2.427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Eusebi V., Pich A., Macchiorlatti E., Bussolati G. Morpho-functional differentiation in lobular carcinoma of the breast. Histopathology. 1977 Jul;1(4):301–314. doi: 10.1111/j.1365-2559.1977.tb01668.x. [DOI] [PubMed] [Google Scholar]
  13. Forbes M. S., Sperelakis N. The "imaged-desmosome": a component of intercalated discs in embryonic guinea pig myocardium. Anat Rec. 1975 Oct;183(2):243–257. doi: 10.1002/ar.1091830203. [DOI] [PubMed] [Google Scholar]
  14. Fortney J. A. Cytology of eccrine sweat glands in the opossum. Am J Anat. 1973 Feb;136(2):205–219. doi: 10.1002/aja.1001360207. [DOI] [PubMed] [Google Scholar]
  15. Franke W. W., Appelhans B., Schmid E., Freudenstein C., Osborn M., Weber K. The organization of cytokeratin filaments in the intestinal epithelium. Eur J Cell Biol. 1979 Aug;19(3):255–268. [PubMed] [Google Scholar]
  16. Franke W. W., Grund C., Osborn M., Weber K. The intermediate-sized filaments in rat kangaroo PtK2 cells. I. Morphology in situ. Cytobiologie. 1978 Aug;17(2):365–391. [PubMed] [Google Scholar]
  17. Franke W. W., Lüder M. R., Kartenbeck J., Zerban H., Keenan T. W. Involvement of vesicle coat material in casein secretion and surface regeneration. J Cell Biol. 1976 Apr;69(1):173–195. doi: 10.1083/jcb.69.1.173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Franke W. W. Relationship of nuclear membranes with filaments and microtubules. Protoplasma. 1971;73(2):263–292. doi: 10.1007/BF01275600. [DOI] [PubMed] [Google Scholar]
  19. Franke W. W., Schmid E., Osborn M., Weber K. Different intermediate-sized filaments distinguished by immunofluorescence microscopy. Proc Natl Acad Sci U S A. 1978 Oct;75(10):5034–5038. doi: 10.1073/pnas.75.10.5034. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Franke W. W., Schmid E., Osborn M., Weber K. Intermediate-sized filaments of human endothelial cells. J Cell Biol. 1979 Jun;81(3):570–580. doi: 10.1083/jcb.81.3.570. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Franke W. W., Schmid E., Weber K., Osborn M. HeLa cells contain intermediate-sized filaments of the prekeratin type. Exp Cell Res. 1979 Jan;118(1):95–109. doi: 10.1016/0014-4827(79)90587-1. [DOI] [PubMed] [Google Scholar]
  22. Franke W. W., Schmid E., Winter S., Osborn M., Weber K. Widespread occurrence of intermediate-sized filaments of the vimentin-type in cultured cells from diverse vertebrates. Exp Cell Res. 1979 Oct 1;123(1):25–46. doi: 10.1016/0014-4827(79)90418-x. [DOI] [PubMed] [Google Scholar]
  23. Franke W. W., Weber K., Osborn M., Schmid E., Freudenstein C. Antibody to prekeratin. Decoration of tonofilament like arrays in various cells of epithelial character. Exp Cell Res. 1978 Oct 15;116(2):429–445. doi: 10.1016/0014-4827(78)90466-4. [DOI] [PubMed] [Google Scholar]
  24. Freudenstein C., Franke W. W., Osborn M., Weber K. Reaction of tonofilament-like intermediate-sized filaments with antibodies raised against isolated defined polypeptides of bovine hoof prekeratin. Cell Biol Int Rep. 1978 Nov;2(6):591–600. doi: 10.1016/0309-1651(78)90068-1. [DOI] [PubMed] [Google Scholar]
  25. Gabbiani G., Csank-Brassert J., Schneeberger J. C., Kapanci Y., Trenchev P., Holborow E. J. Contractile proteins in human cancer cells. Immunofluorescent and electron microscopic study. Am J Pathol. 1976 Jun;83(3):457–474. [PMC free article] [PubMed] [Google Scholar]
  26. Gabella G., Blundell D. Effect of stretch and contraction on caveolae of smooth muscle cells. Cell Tissue Res. 1978 Jul 5;190(2):255–271. doi: 10.1007/BF00218174. [DOI] [PubMed] [Google Scholar]
  27. Garrett J. R. The autonomic innervation of rabbit salivary glands studied electron microscopically after 5-hydroxydopamine administration. Cell Tissue Res. 1977 Mar 24;178(4):551–562. doi: 10.1007/BF00219574. [DOI] [PubMed] [Google Scholar]
  28. Girardie J. Histo-cytomorphologie de la glande mammaire de la souris C3H et de trois autres rongeurs. Z Zellforsch Mikrosk Anat. 1968 Apr 25;87(4):478–503. [PubMed] [Google Scholar]
  29. Gordon W. E., 3rd, Bushnell A., Burridge K. Characterization of the intermediate (10 nm) filaments of cultured cells using an autoimmune rabbit antiserum. Cell. 1978 Feb;13(2):249–261. doi: 10.1016/0092-8674(78)90194-0. [DOI] [PubMed] [Google Scholar]
  30. Gross W. O., Müller C. A mechanical momentum in ultrastructural development of the heart. Cell Tissue Res. 1977 Mar 24;178(4):483–494. doi: 10.1007/BF00219570. [DOI] [PubMed] [Google Scholar]
  31. Hamperl H. The myothelia (myoepithelial cells). Normal state; regressive changes; hyperplasia; tumors. Curr Top Pathol. 1970;53:161–220. [PubMed] [Google Scholar]
  32. Hubbard B. D., Lazarides E. Copurification of actin and desmin from chicken smooth muscle and their copolymerization in vitro to intermediate filaments. J Cell Biol. 1979 Jan;80(1):166–182. doi: 10.1083/jcb.80.1.166. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Hynes R. O., Destree A. T. 10 nm filaments in normal and transformed cells. Cell. 1978 Jan;13(1):151–163. doi: 10.1016/0092-8674(78)90146-0. [DOI] [PubMed] [Google Scholar]
  34. Jarasch E. D., Bruder G., Keenan T. W., Franke W. W. Redox constituents in milk fat globule membranes and rough endoplasmic reticulum from lactating mammary gland. J Cell Biol. 1977 Apr;73(1):223–241. doi: 10.1083/jcb.73.1.223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Jockusch B. M., Kelley K. H., Meyer R. K., Burger M. M. An efficient method to produce specific anti-actin. Histochemistry. 1978 Apr 4;55(3):177–184. doi: 10.1007/BF00495757. [DOI] [PubMed] [Google Scholar]
  36. Lazarides E., Balzer D. R., Jr Specificity of desmin to avian and mammalian muscle cells. Cell. 1978 Jun;14(2):429–438. doi: 10.1016/0092-8674(78)90128-9. [DOI] [PubMed] [Google Scholar]
  37. Lazarides E., Granger B. L. Fluorescent localization of membrane sites in glycerinated chicken skeletal muscle fibers and the relationship of these sites to the protein composition of the Z disc. Proc Natl Acad Sci U S A. 1978 Aug;75(8):3683–3687. doi: 10.1073/pnas.75.8.3683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Lazarides E., Hubbard B. D. Immunological characterization of the subunit of the 100 A filaments from muscle cells. Proc Natl Acad Sci U S A. 1976 Dec;73(12):4344–4348. doi: 10.1073/pnas.73.12.4344. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Lazarides E. The distribution of desmin (100 A) filaments in primary cultures of embryonic chick cardiac cells. Exp Cell Res. 1978 Mar 15;112(2):265–273. doi: 10.1016/0014-4827(78)90209-4. [DOI] [PubMed] [Google Scholar]
  40. Lazarides E., Weber K. Actin antibody: the specific visualization of actin filaments in non-muscle cells. Proc Natl Acad Sci U S A. 1974 Jun;71(6):2268–2272. doi: 10.1073/pnas.71.6.2268. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Lehto V. P., Virtanen I., Kurki P. Intermediate filaments anchor the nuclei in nuclear monolayers of cultured human fibroblasts. Nature. 1978 Mar 9;272(5649):175–177. doi: 10.1038/272175a0. [DOI] [PubMed] [Google Scholar]
  42. Matoltsy A. G. Desmosomes, filaments, and keratohyaline granules: their role in the stabilization and keratinization of the epidermis. J Invest Dermatol. 1975 Jul;65(1):127–142. doi: 10.1111/1523-1747.ep12598093. [DOI] [PubMed] [Google Scholar]
  43. Osborn M., Franke W. W., Weber K. Visualization of a system of filaments 7-10 nm thick in cultured cells of an epithelioid line (Pt K2) by immunofluorescence microscopy. Proc Natl Acad Sci U S A. 1977 Jun;74(6):2490–2494. doi: 10.1073/pnas.74.6.2490. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Pitelka D. R., Hamamoto S. T., Duafala J. G., Nemanic M. K. Cell contacts in the mouse mammary gland. I. Normal gland in postnatal development and the secretory cycle. J Cell Biol. 1973 Mar;56(3):797–818. doi: 10.1083/jcb.56.3.797. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Pitelka D. R., Hamamoto S. T. Form and function in mammary epithelium: the interpretation of ultrastructure. J Dairy Sci. 1977 Apr;60(4):643–654. doi: 10.3168/jds.S0022-0302(77)83914-3. [DOI] [PubMed] [Google Scholar]
  46. Radnor C. J. Myoepithelial cell differentiation in rat mammary glands. J Anat. 1972 Apr;111(Pt 3):381–398. [PMC free article] [PubMed] [Google Scholar]
  47. Radnor C. J. Myoepithelium in the prelactating and lactating mammary glands of the rat. J Anat. 1972 Sep;112(Pt 3):337–353. [PMC free article] [PubMed] [Google Scholar]
  48. Rodewald R., Newman S. B., Karnovsky M. J. Contraction of isolated brush borders from the intestinal epithelium. J Cell Biol. 1976 Sep;70(3):541–554. doi: 10.1083/jcb.70.3.541. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Ruby J. R., Canning H. B. Ultrastructure of the acinar cells in the submandibular gland of the nine-banded armadillo. J Morphol. 1978 Jan;155(1):1–17. doi: 10.1002/jmor.1051550102. [DOI] [PubMed] [Google Scholar]
  50. Schroeder B. T., Chakraborty J., Soloff M. S. Binding of [3H]oxytocin to cells isolated from the mammary gland of the lactating rat. J Cell Biol. 1977 Aug;74(2):428–440. doi: 10.1083/jcb.74.2.428. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Small J. V., Sobieszek A. Studies on the function and composition of the 10-NM(100-A) filaments of vertebrate smooth muscle. J Cell Sci. 1977 Feb;23:243–268. doi: 10.1242/jcs.23.1.243. [DOI] [PubMed] [Google Scholar]
  52. Soloff M. S., Rees H. D., Sar M., Stumpf W. E. Autoradiographic localization of radioactivity from [3-H]oxytocin in the rat mammary gland and oviduct. Endocrinology. 1975 Jun;96(6):1475–1477. doi: 10.1210/endo-96-6-1475. [DOI] [PubMed] [Google Scholar]
  53. Staehelin L. A. Structure and function of intercellular junctions. Int Rev Cytol. 1974;39:191–283. doi: 10.1016/s0074-7696(08)60940-7. [DOI] [PubMed] [Google Scholar]
  54. Starger J. M., Brown W. E., Goldman A. E., Goldman R. D. Biochemical and immunological analysis of rapidly purified 10-nm filaments from baby hamster kidney (BHK-21) cells. J Cell Biol. 1978 Jul;78(1):93–109. doi: 10.1083/jcb.78.1.93. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Steinert P. M., Idler W. W., Zimmerman S. B. Self-assembly of bovine epidermal keratin filaments in vitro. J Mol Biol. 1976 Dec 15;108(3):547–567. doi: 10.1016/s0022-2836(76)80136-2. [DOI] [PubMed] [Google Scholar]
  56. Steinert P. M., Zimmerman S. B., Starger J. M., Goldman R. D. Ten-nanometer filaments of hamster BHK-21 cells and epidermal keratin filaments have similar structures. Proc Natl Acad Sci U S A. 1978 Dec;75(12):6098–6101. doi: 10.1073/pnas.75.12.6098. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Strum J. M. Estrogen-induced alterations in the myoepithelial cells of the rat mammary gland. Cell Tissue Res. 1978 Oct 6;193(1):155–161. doi: 10.1007/BF00221608. [DOI] [PubMed] [Google Scholar]
  58. Sun T. T., Green H. Cultured epithelial cells of cornea, conjunctiva and skin: absence of marked intrinsic divergence of their differentiated states. Nature. 1977 Oct 6;269(5628):489–493. doi: 10.1038/269489a0. [DOI] [PubMed] [Google Scholar]
  59. Sun T. T., Green H. Immunofluorescent staining of keratin fibers in cultured cells. Cell. 1978 Jul;14(3):469–476. doi: 10.1016/0092-8674(78)90233-7. [DOI] [PubMed] [Google Scholar]
  60. Tani E., Yamagata S., Ito Y. Cell membrane structure of vascular smooth muscle of circle of Willis. Cell Tissue Res. 1977 Mar 30;179(1):131–142. doi: 10.1007/BF00278468. [DOI] [PubMed] [Google Scholar]
  61. Tobon H., Salazar H. Ultrastructure of the human mammary gland. II. Postpartum lactogenesis. J Clin Endocrinol Metab. 1975 May;40(5):834–844. doi: 10.1210/jcem-40-5-834. [DOI] [PubMed] [Google Scholar]
  62. Weber K., Rathke P. C., Osborn M., Franke W. W. Distribution of actin and tubulin in cells and in glycerinated cell models after treatment with cytochalasin B (CB). Exp Cell Res. 1976 Oct 15;102(2):285–297. doi: 10.1016/0014-4827(76)90044-6. [DOI] [PubMed] [Google Scholar]
  63. Weber K., Wehland J., Herzog W. Griseofulvin interacts with microtubules both in vivo and in vitro. J Mol Biol. 1976 Apr 25;102(4):817–829. doi: 10.1016/0022-2836(76)90293-x. [DOI] [PubMed] [Google Scholar]
  64. Webster R. E., Osborn M., Weber K. Visualization of the same PtK2 cytoskeletons by both immunofluorescence and low power electron microscopy. Exp Cell Res. 1978 Nov;117(1):47–61. doi: 10.1016/0014-4827(78)90426-3. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES