Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1980 Mar 1;84(3):513–530. doi: 10.1083/jcb.84.3.513

The movement of membranous organelles in axons. Electron microscopic identification of anterogradely and retrogradely transported organelles

PMCID: PMC2110575  PMID: 6153657

Abstract

To identify the structures to be rapidly transported through the axons, we developed a new method to permit local cooling of mouse saphenous nerves in situ without exposing them. By this method, both anterograde and retrograde transport were successfully interrupted, while the structural integrity of the nerves was well preserved. Using radioactive tracers, anterogradely transported proteins were shown to accumulate just proximal to the cooled site, and retrogradely transported proteins just distal to the cooled site. Where the anterogradely transported proteins accumulated, the vesiculotubular membranous structures increased in amount inside both myelinated and unmyelinated axons. Such accumulated membranous structures showed a relatively uniform diameter of 50--80 nm, and some of them seemed to be continuous with the axonal smooth endoplasmic reticulum (SER). Thick sections of nerves selectively stained for the axonal membranous structures revealed that the network of the axonal SER was also packed inside axons proximal to the cooled site. In contrast, large membranous bodies of varying sizes accumulated inside axons just distal to the cooled site, where the retrogradely transported proteins accumulated. These bodies were composed mainly of multivesicular bodies and lamellated membranous structures. When horseradish peroxidase was administered in the distal end of the nerve, membranous bodies showing this activity accumulated, together with unstained membranous bodies. Hence, we are led to propose that, besides mitochondria, the membranous components in the axon can be classified into two systems from the viewpoint of axonal transport: "axonal SER and vesiculotubular structures" in the anterograde direction and "large membranous bodies" in the retrograde direction.

Full Text

The Full Text of this article is available as a PDF (1.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abe T., Haga T., Kurokawa M. Rapid transport of phosphatidylcholine occurring simultaneously with protein transport in the frog sciatic nerve. Biochem J. 1973 Nov;136(3):731–740. doi: 10.1042/bj1360731. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Abe T., Haga T., Kurokawa M. Retrograde axoplasmic transport: its continuation as anterograde transport. FEBS Lett. 1974 Oct 15;47(2):272–275. doi: 10.1016/0014-5793(74)81028-8. [DOI] [PubMed] [Google Scholar]
  3. Berlinrood M., McGee-Russell S. M., Allen R. D. Patterns of particle movement in nerve fibres in vitro. An analysis by photokymography and microscopy. J Cell Sci. 1972 Nov;11(3):875–886. doi: 10.1242/jcs.11.3.875. [DOI] [PubMed] [Google Scholar]
  4. Birks R. I., Mackey M. C., Weldon P. R. Organelle formation from pinocytotic elements in neurites of cultured sympathetic ganglia. J Neurocytol. 1972 Dec;1(4):311–340. doi: 10.1007/BF01102938. [DOI] [PubMed] [Google Scholar]
  5. Bisby M. A. Orthograde and retrograde axonal transport of labeled protein in motoneurons. Exp Neurol. 1976 Mar;50(3):628–640. doi: 10.1016/0014-4886(76)90032-7. [DOI] [PubMed] [Google Scholar]
  6. Bray J. J., Kon C. M., Breckenridge B. M. Reversed polarity of rapid axonal transport in chicken motoneurons. Brain Res. 1971 Oct 29;33(2):560–564. doi: 10.1016/0006-8993(71)90138-7. [DOI] [PubMed] [Google Scholar]
  7. Breuer A. C., Christian C. N., Henkart M., Nelson P. G. Computer analysis of organelle translocation in primary neuronal cultures and continuous cell lines. J Cell Biol. 1975 Jun;65(3):562–576. doi: 10.1083/jcb.65.3.562. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Brimijoin S. Stop-flow: a new technique for measuring axonal transport, and its application to the transport of dopamine-beta-hydroxylase. J Neurobiol. 1975 Jul;6(4):379–394. doi: 10.1002/neu.480060404. [DOI] [PubMed] [Google Scholar]
  9. Byers M. R. Structural correlates of rapid axonal transport: evidence that microtubules may not be directly involved. Brain Res. 1974 Jul 19;75(1):97–113. doi: 10.1016/0006-8993(74)90773-2. [DOI] [PubMed] [Google Scholar]
  10. Cancalon P., Beidler L. M. Distribution along the axon and into various subcellular fractions of molecules labeled with (3H)leucine and rapidly transported in the garfish olfactory nerve. Brain Res. 1975 May 23;89(2):225–244. doi: 10.1016/0006-8993(75)90715-5. [DOI] [PubMed] [Google Scholar]
  11. Colman D. R., Scalia F., Cabrales E. Light and electron microscopic observations on the anterograde transport of horseradish peroxidase in the optic pathway in the mouse and rat. Brain Res. 1976 Jan 30;102(1):156–163. doi: 10.1016/0006-8993(76)90582-5. [DOI] [PubMed] [Google Scholar]
  12. Cooper P. D., Smith R. S. The movement of optically detectable organelles in myelinated axons of Xenopus laevis. J Physiol. 1974 Oct;242(1):77–97. doi: 10.1113/jphysiol.1974.sp010695. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Cosens B., Thacker D., Brimijoin S. Temperature-dependence of rapid axonal transport in sympathetic nerves of the rabbit. J Neurobiol. 1976 Jul;7(4):339–354. doi: 10.1002/neu.480070406. [DOI] [PubMed] [Google Scholar]
  14. Di Giamberardino L. D., Bennett G., Koenig H. L., Droz B. Axonal migration of protein and glycoprotein to nerve endings. 3. Cell fraction analysis of chicken ciliary ganglion after intracerebral injection of labeled precursors of proteins and glycoproteins. Brain Res. 1973 Sep 28;60(1):147–159. doi: 10.1016/0006-8993(73)90854-8. [DOI] [PubMed] [Google Scholar]
  15. Droz B., Koenig H. L., Biamberardino L. D., Di Giamberardino L. Axonal migration of protein and glycoprotein to nerve endings. I. Radioautographic analysis of the renewal of protein in nerve endings of chicken ciliary ganglion after intracerebral injection of (3H)lysine. Brain Res. 1973 Sep 28;60(1):93–127. doi: 10.1016/0006-8993(73)90852-4. [DOI] [PubMed] [Google Scholar]
  16. Droz B., Rambourg A., Koenig H. L. The smooth endoplasmic reticulum: structure and role in the renewal of axonal membrane and synaptic vesicles by fast axonal transport. Brain Res. 1975 Jul 25;93(1):1–13. doi: 10.1016/0006-8993(75)90282-6. [DOI] [PubMed] [Google Scholar]
  17. Edström A., Hanson M. Retrograde axonal transport of proteins in vitro in frog sciatic nerves. Brain Res. 1973 Oct 26;61:311–320. doi: 10.1016/0006-8993(73)90535-0. [DOI] [PubMed] [Google Scholar]
  18. Edström A., Hanson M. Temperature effects on fast axonal transport of proteins in vitro in frog sciatic nerves. Brain Res. 1973 Aug 30;58(2):345–354. doi: 10.1016/0006-8993(73)90006-1. [DOI] [PubMed] [Google Scholar]
  19. Elam J. S., Agranoff B. W. Transport of proteins and sulfated mucopolysaccharides in the goldfish visual system. J Neurobiol. 1971;2(4):379–390. doi: 10.1002/neu.480020409. [DOI] [PubMed] [Google Scholar]
  20. Forman D. S., Padjen A. L., Siggins G. R. Axonal transport of organelles visualized by light microscopy: cinemicrographic and computer analysis. Brain Res. 1977 Nov 11;136(2):197–213. doi: 10.1016/0006-8993(77)90798-3. [DOI] [PubMed] [Google Scholar]
  21. Frizell M., Sjöstrand J. Retrograde axonal transport of rapidly migrating proteins in the vagus and hypoglossal nerves of the rabbit. J Neurochem. 1974 Oct;23(4):651–657. doi: 10.1111/j.1471-4159.1974.tb04388.x. [DOI] [PubMed] [Google Scholar]
  22. Grafstein B., Forman D. S., McEwen B. S. Effects of temperature on axonal transport and turnover of protein in goldfish optic system. Exp Neurol. 1972 Jan;34(1):158–170. doi: 10.1016/0014-4886(72)90196-3. [DOI] [PubMed] [Google Scholar]
  23. Grafstein B., Miller J. A., Ledeen R. W., Haley J., Specht S. C. Axonal transport of phospholipid in goldfish optic system. Exp Neurol. 1975 Feb;46(2):261–281. doi: 10.1016/0014-4886(75)90134-x. [DOI] [PubMed] [Google Scholar]
  24. Graham R. C., Jr, Karnovsky M. J. The early stages of absorption of injected horseradish peroxidase in the proximal tubules of mouse kidney: ultrastructural cytochemistry by a new technique. J Histochem Cytochem. 1966 Apr;14(4):291–302. doi: 10.1177/14.4.291. [DOI] [PubMed] [Google Scholar]
  25. Gross G. W. The effect of temperature on the rapid axoplasmic transport in C-fibers. Brain Res. 1973 Jun 29;56:359–363. doi: 10.1016/0006-8993(73)90353-3. [DOI] [PubMed] [Google Scholar]
  26. Hanson M. A new method to study fast axonal transport in vivo. Brain Res. 1978 Sep 15;153(1):121–126. doi: 10.1016/0006-8993(78)91133-2. [DOI] [PubMed] [Google Scholar]
  27. Hansson H. A. Uptake and intracellular bidirectional transport of horseradish peroxidase in retinal ganglion cells. Exp Eye Res. 1973 Aug 24;16(5):377–388. doi: 10.1016/0014-4835(73)90132-2. [DOI] [PubMed] [Google Scholar]
  28. Hendrickson A. E. Electron microscopic distribution of axoplasmic transport. J Comp Neurol. 1972 Apr;144(4):381–398. doi: 10.1002/cne.901440402. [DOI] [PubMed] [Google Scholar]
  29. Heslop J. P. Axonal flow and fast transport in nerves. Adv Comp Physiol Biochem. 1975;6:75–163. doi: 10.1016/b978-0-12-011506-8.50008-1. [DOI] [PubMed] [Google Scholar]
  30. Heslop J. P., Howes E. A. Temperature and inhibitor effects on fast axonal transport in a molluscan nerve. J Neurochem. 1972 Jul;19(7):1709–1716. doi: 10.1111/j.1471-4159.1972.tb06215.x. [DOI] [PubMed] [Google Scholar]
  31. Hoffman P. N., Lasek R. J. The slow component of axonal transport. Identification of major structural polypeptides of the axon and their generality among mammalian neurons. J Cell Biol. 1975 Aug;66(2):351–366. doi: 10.1083/jcb.66.2.351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Karlsson J. O., Sjöstrand J. Rapid intracellular transport of fucose-containing glycoproteins in retinal ganglion cells. J Neurochem. 1971 Nov;18(11):2209–2216. doi: 10.1111/j.1471-4159.1971.tb05079.x. [DOI] [PubMed] [Google Scholar]
  33. Kerkut G. A. Axoplasmic transport. Comp Biochem Physiol A Comp Physiol. 1975 Aug 1;51(4):701–704. doi: 10.1016/0300-9629(75)90041-9. [DOI] [PubMed] [Google Scholar]
  34. Komiya Y., Kurokawa M. Asymmetry of protein transport in two branches of bifurcating axons. Brain Res. 1978 Jan 13;139(2):354–358. doi: 10.1016/0006-8993(78)90936-8. [DOI] [PubMed] [Google Scholar]
  35. Kristensson K., Olsson Y. Retrograde axonal transport of protein. Brain Res. 1971 Jun 18;29(2):363–365. doi: 10.1016/0006-8993(71)90044-8. [DOI] [PubMed] [Google Scholar]
  36. LaVail J. H., LaVail M. M. The retrograde intraaxonal transport of horseradish peroxidase in the chick visual system: a light and electron microscopic study. J Comp Neurol. 1974 Oct 1;157(3):303–357. doi: 10.1002/cne.901570304. [DOI] [PubMed] [Google Scholar]
  37. LaVail M. M., LaVail J. H. Retrograde intraaxonal transport of horseradish peroxidase in retinal ganglion cells of the chick. Brain Res. 1975 Feb 28;85(2):273–280. doi: 10.1016/0006-8993(75)90081-5. [DOI] [PubMed] [Google Scholar]
  38. Lasek R. J. Bidirectional transport of radioactively labelled axoplasmic components. Nature. 1967 Dec 23;216(5121):1212–1214. doi: 10.1038/2161212a0. [DOI] [PubMed] [Google Scholar]
  39. Leestma J. E., Freeman S. S. Computer-assisted analysis of particulate axoplasmic flow in organized CNS tissue cultures. J Neurobiol. 1977 Sep;8(5):453–467. doi: 10.1002/neu.480080506. [DOI] [PubMed] [Google Scholar]
  40. Leestma J. E. Velocity measurements of particulate neuroplasmic flow in organized mammalian CNS tissue cultures. J Neurobiol. 1976 Mar;7(2):173–183. doi: 10.1002/neu.480070209. [DOI] [PubMed] [Google Scholar]
  41. Lubińska L., Niemierko S. Velocity and intensity of bidirectional migration of acetylcholinesterase in transected nerves. Brain Res. 1971 Apr 2;27(2):329–342. doi: 10.1016/0006-8993(71)90258-7. [DOI] [PubMed] [Google Scholar]
  42. Lubińska L. On axoplasmic flow. Int Rev Neurobiol. 1975;17:241–296. doi: 10.1016/s0074-7742(08)60211-1. [DOI] [PubMed] [Google Scholar]
  43. MIANI N. PROXIMO-DISTAL MOVEMENT OF PHOSPHOLIPID IN THE AXOPLASM OF THE INTACT AND REGENERATING NEURONS. Prog Brain Res. 1964;13:115–126. doi: 10.1016/s0079-6123(08)60141-7. [DOI] [PubMed] [Google Scholar]
  44. McEwen B. S., Forman D. S., Grafstein B. Components of fast and slow axonal transport in the goldfish optic nerve. J Neurobiol. 1971;2(4):361–377. doi: 10.1002/neu.480020408. [DOI] [PubMed] [Google Scholar]
  45. Mori H., Komiya Y., Kurokawa M. Slowly migrating axonal polypeptides. Inequalities in their rate and amount of transport between two branches of bifurcating axons. J Cell Biol. 1979 Jul;82(1):174–184. doi: 10.1083/jcb.82.1.174. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Nauta H. J., Kaiserman-Abramof I. R., Lasek R. J. Electron microscopic observations of horseradish peroxidase transported from the caudoputamen to the substantia nigra in the rat: possible involvement of the agranular reticulum. Brain Res. 1975 Mar 7;85(3):373–384. doi: 10.1016/0006-8993(75)90814-8. [DOI] [PubMed] [Google Scholar]
  47. Ochs S. Characteristics and a model for fast axoplasmic transport in nerve. J Neurobiol. 1971;2(4):331–345. doi: 10.1002/neu.480020406. [DOI] [PubMed] [Google Scholar]
  48. Ochs S. Fast transport of materials in mammalian nerve fibers. Science. 1972 Apr 21;176(4032):252–260. doi: 10.1126/science.176.4032.252. [DOI] [PubMed] [Google Scholar]
  49. Ochs S., Smith C. Low temperature slowing and cold-block of fast axoplasmic transport in mammalian nerves in vitro. J Neurobiol. 1975 Jan;6(1):85–102. doi: 10.1002/neu.480060112. [DOI] [PubMed] [Google Scholar]
  50. Ochs S. Trophic functions of the neuron. 3. Mechanisms of neurotrophic interactions. Systems of material transport in nerve fibers (axoplasmic transport) related to nerve function and trophic control. Ann N Y Acad Sci. 1974 Mar 22;228(0):202–223. doi: 10.1111/j.1749-6632.1974.tb20511.x. [DOI] [PubMed] [Google Scholar]
  51. Repérant J. The orthograde transport of horseradish peroxidase in the visual system. Brain Res. 1975 Feb 28;85(2):307–312. doi: 10.1016/0006-8993(75)90086-4. [DOI] [PubMed] [Google Scholar]
  52. Schmitt F. O. Fibrous proteins--neuronal organelles. Proc Natl Acad Sci U S A. 1968 Aug;60(4):1092–1101. doi: 10.1073/pnas.60.4.1092. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Schonbach J., Schonbach C., Cuénoid M. Rapid phase of axoplasmic flow and synaptic proteins: an electron microscopical autoradiographic study. J Comp Neurol. 1971 Apr;141(4):485–497. doi: 10.1002/cne.901410406. [DOI] [PubMed] [Google Scholar]
  54. Sotelo C., Riche D. The smooth endoplasmic reticulum and the retrograde and fast orthograde transport of horseradish peroxidase in the nigro-striato-nigral loop. Anat Embryol (Berl) 1974;146(2):209–218. doi: 10.1007/BF00315596. [DOI] [PubMed] [Google Scholar]
  55. Tsukita S., Ishikawa H. Morphological evidence for the involvement of the smooth endoplasmic reticulum in axonal transport. Brain Res. 1979 Oct 5;174(2):315–318. doi: 10.1016/0006-8993(79)90853-9. [DOI] [PubMed] [Google Scholar]
  56. Tsukita S., Ishikawa H. Three-dimensional distribution of smooth endoplasmic reticulum in myelinated axons. J Electron Microsc (Tokyo) 1976;25(3):141–149. [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES