Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1980 Mar 1;84(3):483–494. doi: 10.1083/jcb.84.3.483

Myelin-specific proteins and glycolipids in rat Schwann cells and oligodendrocytes in culture

PMCID: PMC2110578  PMID: 7358790

Abstract

We have used antibodies to identify Schwann cells and oligodendrocytes and to study the expression of myelin-specific glycolipids and proteins in these cells isolated from perinatal rats. Our findings suggest that only Schwann cells which have been induced to myelinate make detectable amounts of galactocerebroside (GC), sulfatide, myelin basic protein (BP), or the major peripheral myelin glycoprotein (P0). When rat Schwann cells were cultured, they stopped making detectable amounts of these myelin molecules, even when the cells were associated with neurites in short-term explant cultures of dorsal root ganglion. In contrast, oligodendrocytes in dissociated cell cultures of neonatal optic nerve, corpus callosum, or cerebellum continued to make GC, sulfatide and BP for many weeks, even in the absence of neurons. These findings suggest that while rat Schwann cells require a continuing signal from appropriate axons to make detectable amounts of myelin- specific glycolipids and proteins, oligodendrocytes do not. Schwann cells and oligodendrocytes also displayed very different morphologies in vitro which appeared to reflect their known differences in myelinating properties in vivo. Since these characteristic morphologies are maintained when Schwann cells and oligodendrocytes were grown together in mixed cultures and in the absence of neurons, we concluded that they are intrinsic properties of these two different myelin- forming cells.

Full Text

The Full Text of this article is available as a PDF (980.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aguayo A. J., Charron L., Bray G. M. Potential of Schwann cells from unmyelinated nerves to produce myelin: a quantitative ultrastructural and radiographic study. J Neurocytol. 1976 Oct;5(8):565–573. doi: 10.1007/BF01175570. [DOI] [PubMed] [Google Scholar]
  2. BEN GEREN B. The formation from the Schwann cell surface of myelin in the peripheral nerves of chick embryos. Exp Cell Res. 1954 Nov;7(2):558–562. doi: 10.1016/s0014-4827(54)80098-x. [DOI] [PubMed] [Google Scholar]
  3. Brockes J. P., Fields K. L., Raff M. C. A surface antigenic marker for rat Schwann cells. Nature. 1977 Mar 24;266(5600):364–366. doi: 10.1038/266364a0. [DOI] [PubMed] [Google Scholar]
  4. Brockes J. P., Fields K. L., Raff M. C. Studies on cultured rat Schwann cells. I. Establishment of purified populations from cultures of peripheral nerve. Brain Res. 1979 Apr 6;165(1):105–118. doi: 10.1016/0006-8993(79)90048-9. [DOI] [PubMed] [Google Scholar]
  5. Bunge R. P. Glial cells and the central myelin sheath. Physiol Rev. 1968 Jan;48(1):197–251. doi: 10.1152/physrev.1968.48.1.197. [DOI] [PubMed] [Google Scholar]
  6. Fields K. L., Brockes J. P., Mirsky R., Wendon L. M. Cell surface markers for distinguishing different types of rat dorsal root ganglion cells in culture. Cell. 1978 May;14(1):43–51. doi: 10.1016/0092-8674(78)90299-4. [DOI] [PubMed] [Google Scholar]
  7. Fields K. L., Gosling C., Megson M., Stern P. L. New cell surface antigens in rat defined by tumors of the nervous system. Proc Natl Acad Sci U S A. 1975 Apr;72(4):1296–1300. doi: 10.1073/pnas.72.4.1296. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hakomori S. Preparation and properties of anti-sulfatide serum. J Immunol. 1974 Jan;112(1):424–426. [PubMed] [Google Scholar]
  9. Herndon R. M., Rauch H. C., Einstein E. R. Immuno-electron microscopic localization of the encephalitogenic basic protein in myelin. Immunol Commun. 1973;2(2):163–172. doi: 10.3109/08820137309022789. [DOI] [PubMed] [Google Scholar]
  10. Lisak R. P., Abramsky O., Dorfman S. H., George J., Manning M. C., Pleasure D. E., Saida T., Silberberg D. H. Antibodies to galactocerebroside bind to oligodendroglia in suspension culture. J Neurol Sci. 1979 Jan;40(1):65–73. doi: 10.1016/0022-510x(79)90009-1. [DOI] [PubMed] [Google Scholar]
  11. Lisak R. P., Falk G. A., Heinze R. G., Kies M. W., Alvord E. C., Jr Dissociation of antibody production from disease suppression in the inhibition of allergic encephalomyelitis by myelin basic protein. J Immunol. 1970 Jun;104(6):1435–1446. [PubMed] [Google Scholar]
  12. Lisak R. P., Heinze R. G., Kies M. W. Relationships between antibodies and experimental allergic encephalomyelitis. 3. Coprecipitation and radioautography of 125I-labeled antigen-antibody complexes for detection of antibodies to myelin basic protein. Int Arch Allergy Appl Immunol. 1970;37(6):621–629. [PubMed] [Google Scholar]
  13. MATURANA H. R. The fine anatomy of the optic nerve of anurans--an electron microscope study. J Biophys Biochem Cytol. 1960 Feb;7:107–120. doi: 10.1083/jcb.7.1.107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Matthews M. A. An electron microscopic study of the relationship between axon diameter and the initiation of myelin production in the peripheral nervous system. Anat Rec. 1968 Jul;161(3):337–351. doi: 10.1002/ar.1091610306. [DOI] [PubMed] [Google Scholar]
  15. McDermott J. R., Wiśniewski H. M. Studies on the myelin protein changes and antigenic properties of rabbit sciatic nerves undergoing Wallerian degeneration. J Neurol Sci. 1977 Aug;33(1-2):81–94. doi: 10.1016/0022-510x(77)90184-8. [DOI] [PubMed] [Google Scholar]
  16. Mendell J. R., Whitaker J. N. Immunocytochemical localization studies of myelin basic protein. J Cell Biol. 1978 Feb;76(2):502–511. doi: 10.1083/jcb.76.2.502. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Mirsky R., Wendon L. M., Black P., Stolkin C., Bray D. Tetanus toxin: a cell surface marker for neurones in culture. Brain Res. 1978 Jun 9;148(1):251–259. doi: 10.1016/0006-8993(78)90399-2. [DOI] [PubMed] [Google Scholar]
  18. Norton W. T., Autilio L. A. The lipid composition of purified bovine brain myelin. J Neurochem. 1966 Apr;13(4):213–222. doi: 10.1111/j.1471-4159.1966.tb06794.x. [DOI] [PubMed] [Google Scholar]
  19. PETERS A. The formation and structure of myelin sheaths in the central nervous system. J Biophys Biochem Cytol. 1960 Oct;8:431–446. doi: 10.1083/jcb.8.2.431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. PETERSON E. R., MURRAY M. R. Myelin sheath formation in cultures of avian spinal ganglia. Am J Anat. 1955 May;96(3):319–355. doi: 10.1002/aja.1000960302. [DOI] [PubMed] [Google Scholar]
  21. Poduslo J. F., Braun P. E. Topographical arrangement of membrane proteins in the intact myelin sheath. Lactoperoxidase incorproation of iodine into myelin surface proteins. J Biol Chem. 1975 Feb 10;250(3):1099–1105. [PubMed] [Google Scholar]
  22. Raff M. C., Abney E., Brockes J. P., Hornby-Smith A. Schwann cell growth factors. Cell. 1978 Nov;15(3):813–822. doi: 10.1016/0092-8674(78)90266-0. [DOI] [PubMed] [Google Scholar]
  23. Raff M. C., Fields K. L., Hakomori S. I., Mirsky R., Pruss R. M., Winter J. Cell-type-specific markers for distinguishing and studying neurons and the major classes of glial cells in culture. Brain Res. 1979 Oct 5;174(2):283–308. doi: 10.1016/0006-8993(79)90851-5. [DOI] [PubMed] [Google Scholar]
  24. Raff M. C., Mirsky R., Fields K. L., Lisak R. P., Dorfman S. H., Silberberg D. H., Gregson N. A., Leibowitz S., Kennedy M. C. Galactocerebroside is a specific cell-surface antigenic marker for oligodendrocytes in culture. Nature. 1978 Aug 24;274(5673):813–816. [PubMed] [Google Scholar]
  25. Skoff R. P., Price D. L., Stocks A. Electron microscopic autoradiographic studies of gliogenesis in rat optic nerve. II. Time of origin. J Comp Neurol. 1976 Oct 1;169(3):313–334. doi: 10.1002/cne.901690304. [DOI] [PubMed] [Google Scholar]
  26. Sternberger N. H., Itoyama Y., Kies M. W., Webster H deF Immunocytochemical method to identify basic protein in myelin-forming oligodendrocytes of newborn rat C.N.S. J Neurocytol. 1978 Apr;7(2):251–263. doi: 10.1007/BF01217922. [DOI] [PubMed] [Google Scholar]
  27. Sternberger N. H., Itoyama Y., Kies M. W., Webster H. D. Myelin basic protein demonstrated immunocytochemically in oligodendroglia prior to myelin sheath formation. Proc Natl Acad Sci U S A. 1978 May;75(5):2521–2524. doi: 10.1073/pnas.75.5.2521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Weinberg H. J., Spencer P. S. Studies on the control of myelinogenesis. II. Evidence for neuronal regulation of myelin production. Brain Res. 1976 Aug 27;113(2):363–378. doi: 10.1016/0006-8993(76)90947-1. [DOI] [PubMed] [Google Scholar]
  29. Wood D. D., Epand R. M., Moscarello M. A. Localization of the basic protein and lipophilin in the myelin membrane with a non-penetrating reagent. Biochim Biophys Acta. 1977 Jun 2;467(2):120–129. doi: 10.1016/0005-2736(77)90189-4. [DOI] [PubMed] [Google Scholar]
  30. Wood J. G., Dawson R. M. Some properties of a major structural glycoprotein of sciatic nerve. J Neurochem. 1974 May;22(5):627–630. doi: 10.1111/j.1471-4159.1974.tb04273.x. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES