Abstract
In rapidly growing hyphae of Saprolegnia ferax, all nuclei contain arrays of kinetochore microtubules, which suggests that the nuclei are all in various phases of mitosis, with no apparent interphase. In prophase nuclei, kinetochore microtubules form a single, hemispherical array adjacent to the centrioles. This array separates into two similar arrays after centriole replication. The two arrays form by separation of the initial group of microtubules, with no kinetochore replication. During metaphase, between 6.5 and 85% of the kinetochores occur as amphitelic pairs, with a slight tendency for pairing to increase as the spindle elongates. 100% pairing has never been observed. The interkinetochore distance in these pairs is consistently similar to or approximately 0.17 microns. Throughout metaphase and early anaphase, there is extensive and increasing diversity in kinetochore microtubule length, so that a true metaphase plate has not been found. During metaphase, anaphase, and telophase, kinetochore numbers vary considerably, with a mean of similar to or approximately 30 per half spindle. A number of artefactual causes for this variability were examined and discarded. Thus, these results are accepted as real, suggesting either variable ploidy levels in the coenocytic hyphae or kinetochore replication during mitosis.
Full Text
The Full Text of this article is available as a PDF (1.6 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Fuge H. Ultrastructure of the mitotic spindle. Int Rev Cytol Suppl. 1977;(6):1–58. [PubMed] [Google Scholar]
- Heath I. B. Mitosis in the fungus Thraustotheca clavata. J Cell Biol. 1974 Jan;60(1):204–220. doi: 10.1083/jcb.60.1.204. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heath I. B. The effect of antimicrotubule agents on the growth and ultrastructure of the fungus Saprolegnia ferax and their ineffectiveness in disrupting hyphal microtubules. Protoplasma. 1975;85(2-4):147–176. doi: 10.1007/BF01567943. [DOI] [PubMed] [Google Scholar]
- Heath I. B. The possible significance of variations in the mitotic systems of the aquatic fungi (Phycomycetes). Biosystems. 1975 Nov;7(3-4):351–359. doi: 10.1016/0303-2647(75)90014-3. [DOI] [PubMed] [Google Scholar]
- Kubai D. F. Unorthodox mitosis in Trichonympha agilis: kinetochore differentiation and chromosome movement. J Cell Sci. 1973 Sep;13(2):511–552. doi: 10.1242/jcs.13.2.511. [DOI] [PubMed] [Google Scholar]
- Perkins F. O. Fine structure of the haplosporidan Kernstab, a persistent, intranuclear mitotic apparatus. J Cell Sci. 1975 Jul;18(2):327–346. doi: 10.1242/jcs.18.2.327. [DOI] [PubMed] [Google Scholar]
- Peterson J. B., Ris H. Electron-microscopic study of the spindle and chromosome movement in the yeast Saccharomyces cerevisiae. J Cell Sci. 1976 Nov;22(2):219–242. doi: 10.1242/jcs.22.2.219. [DOI] [PubMed] [Google Scholar]
- Zickler D., Olson L. W. The synaptonemal complex and the spindle plaque during meiosis in yeast. Chromosoma. 1975;50(1):1–23. doi: 10.1007/BF00284959. [DOI] [PubMed] [Google Scholar]