Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1980 Mar 1;84(3):584–598. doi: 10.1083/jcb.84.3.584

Immune T lymphocyte to tumor cell adhesion. Magnesium sufficient, calcium insufficient

PMCID: PMC2110584  PMID: 6766945

Abstract

The prelytic adhesion of immune cytolytic thymus-derived lymphocytes to specific antigen-bearing ascites tumor target cells has been studied. A new assay was used in which adhesions are permitted to form for 2.5 min; the cells are then dispersed to prevent further adhesion, and the predispersion adhesions are quantitated by subsequent 51Cr release from the tumor cells as a result of cytolytic activity of the adhering lymphocytes. There were the following new findings: (a) magnesium is sufficient to support optimal adhesion formation even when EGTA is added to remove contaminating traces of calcium; (b) calcium supports no adhesion formation when traces of contaminating magnesium are removed by pretreating the medium with a chelating ion exchange resin; (c) calcium synergizes with suboptimal magnesium, increasing the apparent adhesion-supporting potency of magnesium 20-fold in the presence of 50 microM calcium; (d) in the presence of optimal magnesium (2--4 mM), calcium has not effect on the properties of the adhesion by any of six criteria; and (e) manganese supports adhesion better than magnesium, and strontium is ineffective. A survey of previous literature indicates that these results are remarkably similar to the predominant pattern for nonimmunologic cell adhesion (e.g., fibroblasts) involving cells from a variety of tissues in late embryonic and adult avians and mammals. This suggests that a "magnesium sufficient, calcium insufficient" mechanism may be found among the latter types of cell adhesions when appropriately examined. Moreover, it seems that the present lymphocyte-tumor cell adhesion, although evoked by specific receptor-antigen recognition, relies predominantly on mechanisms common to nonimmunologic intercellular adhesion processes.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alexander E., Henkart P. The adherence of human Fc receptor-bearing lymphocytes to antigen-antibody complexes. II. Morphologic alterations induced by the substrate. J Exp Med. 1976 Feb 1;143(2):329–347. doi: 10.1084/jem.143.2.329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Armstrong P. B., Jones D. P. On the role of metal cations in ceullular adhesion: cation specificity. J Exp Zool. 1968 Mar;167(3):275–282. doi: 10.1002/jez.1401670303. [DOI] [PubMed] [Google Scholar]
  3. Armstrong P. B. On the role of metal cations in cellular adhesion: effect on cell surface charge. J Exp Zool. 1966 Oct;163(1):99–109. doi: 10.1002/jez.1401630110. [DOI] [PubMed] [Google Scholar]
  4. BUSCHKE W. Studies on intercellular cohesion in corneal epithelium; methods, effects of proteolytic enzymes, salts, hydrogen ion concentration, and polar-nonpolar substances. J Cell Physiol. 1949 Apr;33(2):145–176. doi: 10.1002/jcp.1030330203. [DOI] [PubMed] [Google Scholar]
  5. Becker E. L., Henson P. M. In vitro studies of immunologically induced secretion of mediators from cells and related phenomena. Adv Immunol. 1973;17:93–193. doi: 10.1016/s0065-2776(08)60732-4. [DOI] [PubMed] [Google Scholar]
  6. Berke G., Gabison D. Energy requirements of the binding and lytic steps of T lymphocyte-mediated cytolysis of leukemic cells in vitro. Eur J Immunol. 1975 Oct;5(10):671–675. doi: 10.1002/eji.1830051004. [DOI] [PubMed] [Google Scholar]
  7. Berke G., Levey R. H. Cellular immunoabsorbents in transplantation immunity. Specific in vitro deletion and recovery of mouse lymphoid cells sensitized against allogeneic tumors. J Exp Med. 1972 Apr 1;135(4):972–984. doi: 10.1084/jem.135.4.972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Binz H., Wigzell H. Shared idiotypic determinants on B and T lymphocytes reactive against the same antigenic determinants. V. Biochemical and serological characteristics of naturally occurring, soluble antigen-binding T-lymphocyte-derived molecules. Scand J Immunol. 1976;5(5):559–571. doi: 10.1111/j.1365-3083.1976.tb00311.x. [DOI] [PubMed] [Google Scholar]
  9. Borle A. B. Calcium metabolism in HeLa cells and the effects of parathyroid hormone. J Cell Biol. 1968 Mar;36(3):567–582. doi: 10.1083/jcb.36.3.567. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Brondz B. D. Complex specificity of immune lymphocytes in allogeneic cell cultures. Folia Biol (Praha) 1968;14(2):115–131. [PubMed] [Google Scholar]
  11. Bryant R. E. Divalent cation requirements for leukocyte adhesiveness. Proc Soc Exp Biol Med. 1969 Mar;130(3):975–977. doi: 10.3181/00379727-130-33701. [DOI] [PubMed] [Google Scholar]
  12. Cerottini J. C., Brunner K. T. Cell-mediated cytotoxicity, allograft rejection, and tumor immunity. Adv Immunol. 1974;18:67–132. doi: 10.1016/s0065-2776(08)60308-9. [DOI] [PubMed] [Google Scholar]
  13. Collins M. Electrokinetic properties of dissociated chick embryo cells. I. pH-surface charge relationships and the effect of calcium ions. J Exp Zool. 1966 Oct;163(1):23–37. doi: 10.1002/jez.1401630103. [DOI] [PubMed] [Google Scholar]
  14. Culp L. A., Black P. H. Release of macromolecules from BALB-c mouse cell lines treated with chelating agents. Biochemistry. 1972 May 23;11(11):2161–2172. doi: 10.1021/bi00761a024. [DOI] [PubMed] [Google Scholar]
  15. Deman J. J., Bruyneel E. A., Mareel M. M. A study on the mechanism of intercellular adhesion. Effects of neuraminidase, calcium, and trypsin on the aggregation of suspended HeLa cells. J Cell Biol. 1974 Mar;60(3):641–652. doi: 10.1083/jcb.60.3.641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Diamond J. M., Wright E. M. Biological membranes: the physical basis of ion and nonelectrolyte selectivity. Annu Rev Physiol. 1969;31:581–646. doi: 10.1146/annurev.ph.31.030169.003053. [DOI] [PubMed] [Google Scholar]
  17. Ducibella T., Anderson E. Cell shape and membrane changes in the eight-cell mouse embryo: prerequisites for morphogenesis of the blastocyst. Dev Biol. 1975 Nov;47(1):45–58. doi: 10.1016/0012-1606(75)90262-6. [DOI] [PubMed] [Google Scholar]
  18. Edwards J. G., Campbell J. A., Robson R. T., Vicker M. G. Trypsinized BHK21 cells aggregate in the presence of metabolic inhibitors and in the absence of divalent cations. J Cell Sci. 1975 Dec;19(3):653–657. doi: 10.1242/jcs.19.3.653. [DOI] [PubMed] [Google Scholar]
  19. FORTE J. G., NAUSS A. H. EFFECTS OF CALCIUM REMOVAL ON BULLFROG GASTRIC MUCOSA. Am J Physiol. 1963 Oct;205:631–637. doi: 10.1152/ajplegacy.1963.205.4.631. [DOI] [PubMed] [Google Scholar]
  20. Garvin J. E. Effects of divalent cations on adhesiveness of rat polymorphonuclear neutrophils in vitro. J Cell Physiol. 1968 Dec;72(3):197–212. doi: 10.1002/jcp.1040720307. [DOI] [PubMed] [Google Scholar]
  21. Gately M. K., Martz E. Comparative studies on the mechanisms of nonspecific, Con A-dependent cytolysis and specific T cell-mediated cytolysis. J Immunol. 1977 Nov;119(5):1711–1722. [PubMed] [Google Scholar]
  22. Gately M. K., Martz E. Early steps in specific tumor cell lysis by sensitized mouse T lymphocytes. III. Resolution of two distinct roles for calcium in the cytolytic process. J Immunol. 1979 Feb;122(2):482–489. [PubMed] [Google Scholar]
  23. Golstein P., Smith E. T. The lethal hit stage of mouse T and non-T cell-mediated cytolysis: differences in cation requirements and characterization of an analytical "cation pulse" method. Eur J Immunol. 1976 Jan;6(1):31–37. doi: 10.1002/eji.1830060108. [DOI] [PubMed] [Google Scholar]
  24. Gray H. W., Tsan M. F., Wagner H. N., Jr A quantitative study of leukocyte cohesion: effects of divalent cations and pH. J Nucl Med. 1977 Feb;18(2):147–150. [PubMed] [Google Scholar]
  25. Klebe R. J., Rosenberger P. G., Naylor S. L., Burns R. L., Novak R., Kleinman H. Cell attachment to collagen. Isolation of a cell attachment mutant. Exp Cell Res. 1977 Jan;104(1):119–125. doi: 10.1016/0014-4827(77)90074-x. [DOI] [PubMed] [Google Scholar]
  26. Martz E. Mechanism of specific tumor-cell lysis by alloimmune T lymphocytes: resolution and characterization of discrete steps in the cellular interaction. Contemp Top Immunobiol. 1977;7:301–361. doi: 10.1007/978-1-4684-3054-7_9. [DOI] [PubMed] [Google Scholar]
  27. Martz E. Multiple target cell killing by the cytolytic T lymphocyte and the mechanism of cytotoxicity. Transplantation. 1976 Jan;21(1):5–11. doi: 10.1097/00007890-197601000-00002. [DOI] [PubMed] [Google Scholar]
  28. McGuire E. J. Intercellular adhesive selectivity. II. Properties of embryonic chick liver cell-cell adhesion. J Cell Biol. 1976 Jan;68(1):90–100. doi: 10.1083/jcb.68.1.90. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Moore E. G. Cell to substratum adhesion-promoting activity released by normal and virus-transformed cells in culture. J Cell Biol. 1976 Sep;70(3):634–647. doi: 10.1083/jcb.70.3.634. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Neely A. N., Sitzmann J. V., Kersey J. H. EGTA and proteinase reversal of cellular aggregation of activated lymphocytes. Nature. 1976 Dec 23;264(5588):770–771. doi: 10.1038/264770a0. [DOI] [PubMed] [Google Scholar]
  31. Nozawa R. T., Guerrant R. L. Fibrin adherent CHO cell behavior in response to chelators and enterotoxin. Exp Cell Res. 1977 Jun;107(1):25–30. doi: 10.1016/0014-4827(77)90381-0. [DOI] [PubMed] [Google Scholar]
  32. Onishi S., Ito T. Calcium-induced phase separations in phosphatidylserine--phosphatidylcholine membranes. Biochemistry. 1974 Feb 26;13(5):881–887. doi: 10.1021/bi00702a008. [DOI] [PubMed] [Google Scholar]
  33. PETHICA B. A. The physical chemistry of cell adhesion. Exp Cell Res. 1961;Suppl 8:123–140. doi: 10.1016/0014-4827(61)90344-5. [DOI] [PubMed] [Google Scholar]
  34. Parker W. L., Martz E. Lectin-induced nonlethal adhesions between cytolytic T lymphocytes and antigenically unrecognizable tumor cells and nonspecific "triggering" of cytolysis. J Immunol. 1980 Jan;124(1):25–35. [PubMed] [Google Scholar]
  35. Plaut M., Bubbers J. E., Henney C. S. Studies of the mechanism of lymphocyte-mediated cytolysis. VII. Two stages in the T cell-mediated lytic cycle with distinct cation requirements. J Immunol. 1976 Jan;116(1):150–155. [PubMed] [Google Scholar]
  36. Rabinovitch M., DeStefano M. J. Manganese stimulates adhesion and spreading of mouse sarcoma I ascites cells. J Cell Biol. 1973 Oct;59(1):165–176. doi: 10.1083/jcb.59.1.165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Rabinovitch M., Destefano M. J. Macrophage spreading in vitro. II. Manganese and other metals as inducers or as co-factors for induced spreading. Exp Cell Res. 1973 Jun;79(2):423–430. doi: 10.1016/0014-4827(73)90462-x. [DOI] [PubMed] [Google Scholar]
  38. Rosen J. J., Culp L. A. Morphology and cellular origins of substrate-attached material from mouse fibroblasts. Exp Cell Res. 1977 Jun;107(1):139–149. doi: 10.1016/0014-4827(77)90395-0. [DOI] [PubMed] [Google Scholar]
  39. Rutz R., Lilien J. Functional characterization of an adhesive component from the embryonic chick neural retina. J Cell Sci. 1979 Apr;36:323–342. doi: 10.1242/jcs.36.1.323. [DOI] [PubMed] [Google Scholar]
  40. Seglen P. O., Fossa J. Attachment of rat hepatocytes in vitro to substrata of serum protein, collagen, or concanavalin A. Exp Cell Res. 1978 Oct 1;116(1):199–206. doi: 10.1016/0014-4827(78)90076-9. [DOI] [PubMed] [Google Scholar]
  41. Seglen P. O., Gjessing R. Effect of temperature and divalent cations on the substratum attachment of rat hepatocytes in vitro. J Cell Sci. 1978 Dec;34:117–131. doi: 10.1242/jcs.34.1.117. [DOI] [PubMed] [Google Scholar]
  42. Shields R., Pollock K. The adhesion of BHK and PyBHK cells to the substratum. Cell. 1974 Sep;3(1):31–38. doi: 10.1016/0092-8674(74)90034-8. [DOI] [PubMed] [Google Scholar]
  43. Shortman K., Golstein P. Target cell recognition by cytolytic T cells: different requirements for the formation of strong conjugates or for proceeding to lysis. J Immunol. 1979 Aug;123(2):833–839. [PubMed] [Google Scholar]
  44. Steinberg M. S., Armstrong P. B., Granger R. E. On the recovery of adhesiveness by trypsin-dissociated cells. J Membr Biol. 1973;13(2):97–128. doi: 10.1007/BF01868223. [DOI] [PubMed] [Google Scholar]
  45. Stulting R. D., Berke G., Hiemstra K. Evaluation of the effects of cytochalasin B on lymphocyte-mediated cytolysis. Transplantation. 1973 Dec;16(6):684–686. doi: 10.1097/00007890-197312000-00027. [DOI] [PubMed] [Google Scholar]
  46. Stulting R. D., Berke G. Nature of lymphocyte-tumor interaction. A general method for cellular immunoabsorption. J Exp Med. 1973 Apr 1;137(4):932–942. doi: 10.1084/jem.137.4.932. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Tada T., Taniguchi M., Takemori T. Properties of primed suppressor T cells and their products. Transplant Rev. 1975;26:106–129. doi: 10.1111/j.1600-065x.1975.tb00177.x. [DOI] [PubMed] [Google Scholar]
  48. Takeichi M. Functional correlation between cell adhesive properties and some cell surface proteins. J Cell Biol. 1977 Nov;75(2 Pt 1):464–474. doi: 10.1083/jcb.75.2.464. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Takeichi M., Okada T. S. Roles of magnesium and calcium ions in cell-to-substrate adhesion. Exp Cell Res. 1972 Sep;74(1):51–60. doi: 10.1016/0014-4827(72)90480-6. [DOI] [PubMed] [Google Scholar]
  50. Todd F. R., 3rd Inhibition of binding between cytotoxic (T) lymphocytes and tumor target cells by inhibitors of energy metabolism. Transplantation. 1975 Oct;20(4):350–354. doi: 10.1097/00007890-197510000-00015. [DOI] [PubMed] [Google Scholar]
  51. Ukena T. E., Karnovsky M. J. Patching, microvilli, and the agglutination of normal and transformed cells. Prog Clin Biol Res. 1976;9:261–273. [PubMed] [Google Scholar]
  52. Urushihara H., Ozaki H. S., Takeichi M. Immunological detection of cell surface components related with aggregation of Chinese hamster and chick embryonic cells. Dev Biol. 1979 May;70(1):206–216. doi: 10.1016/0012-1606(79)90017-4. [DOI] [PubMed] [Google Scholar]
  53. Urushihara H., Takeichi M., Hakura A., Okada T. S. Different cation requirements for aggregation of BHK cells and their transformed derivatives. J Cell Sci. 1976 Dec;22(3):685–695. doi: 10.1242/jcs.22.3.685. [DOI] [PubMed] [Google Scholar]
  54. WEISS L. The adhesion of cells. Int Rev Cytol. 1960;9:187–225. doi: 10.1016/s0074-7696(08)62747-3. [DOI] [PubMed] [Google Scholar]
  55. Wiseman L. L., Steinberg M. S., Phillips H. M. Experimental modulation of intercellular cohesiveness: reversal of tissue assembly patterns. Dev Biol. 1972 Jul;28(3):498–517. doi: 10.1016/0012-1606(72)90033-4. [DOI] [PubMed] [Google Scholar]
  56. Woodruff J. J., Katz M., Lucas L. E., Stamper H. B., Jr An in vitro model of lymphocyte homing. II. Membrane and cytoplasmic events involved in lymphocyte adherence to specialized high-endothelial venules of lymph nodes. J Immunol. 1977 Nov;119(5):1603–1610. [PubMed] [Google Scholar]
  57. Wright T. C., Ukena T. E., Campbell R., Karnovsky M. J. Rates of aggregation, loss of anchorage dependence, and tumorigenicity of cultured cells. Proc Natl Acad Sci U S A. 1977 Jan;74(1):258–262. doi: 10.1073/pnas.74.1.258. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Yasuda K. Studies on the factors affecting cellular spreading upon culture-substrate. 1. The effects of divalent cations and conditioned medium on cellular spreading. J Cell Sci. 1974 Jul;15(2):269–278. doi: 10.1242/jcs.15.2.269. [DOI] [PubMed] [Google Scholar]
  59. Ziegler H. K., Geyer C., Henney C. S. Studies on the cytolytic activity of human lymphocytes. III. An analysis of requirements for K cell-target interaction. J Immunol. 1977 Nov;119(5):1821–1829. [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES