Abstract
Under certain culture conditions, neonatal rat superior cervical ganglion neurons display not only a number of expected adrenergic characteristics but, paradoxically, also certain cholinergic functions such as the development of hexamethonium-sensitive synaptic contacts and accumulation of choline acetyltransferase (ChAc). The purpose of this study was to determine whether the entire population of cultured neurons was aquiring cholinergic capabilities, or whether this phenomenon was restricted to a subpopulation. After 1--6 and 8 wk in culture, neurons were fixed in KMnO4 after incubation in norepinephrine and prepared for electron microscopy analysis of synaptic vesicle content to determine whether vesicles were dense cored or clear. ChAc, acetylcholinesterase (AChE), and DOPA-decarboxylase (DDC) activities were assayed in sister cultures. In the period from 1 to 8 wk in culture, the average ChAc activity per neuron increased 1,100-fold, and the DDC and AChE activities increased 20- and 30-fold, respectively. After 1 wk in culture, 48 of 50 synaptic boutons contained predominantly dense-cored vesicles, but by 8 wk the synaptic vesicle population was predominantly of the clear type. At intermediate times, the vesicle population in many boutons was mixed. The morphology of the synaptic contacts on neuronal surfaces was that characteristic of autonomic systems, with no definite clustering of the vesicles adjacent to the area of contact. Increased vesicle size correlated with increasing age in culture and the presence of a dense core. Considering these data along with available physiological studies, we conclude that these cultures contain one population of neurons that is initially adrenergic. Over time, under conditions of this culture system, this population develops cholinergic mechanisms. That a neuron may, at a given time, express both cholinergic and adrenergic mechanisms is suggested by the approximately equal numbers of clear and dense-cored vesicles in the boutons found at the intermediate times.
Full Text
The Full Text of this article is available as a PDF (1.1 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bocchini V., Angeletti P. U. The nerve growth factor: purification as a 30,000-molecular-weight protein. Proc Natl Acad Sci U S A. 1969 Oct;64(2):787–794. doi: 10.1073/pnas.64.2.787. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bray D. Surface movements during the growth of single explanted neurons. Proc Natl Acad Sci U S A. 1970 Apr;65(4):905–910. doi: 10.1073/pnas.65.4.905. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bunge R. P., Wood P. Studies on the transplantation of spinal cord tissue in the rat. I. The development of a culture system for hemisections of embryonic spinal cord. Brain Res. 1973 Jul 27;57(2):261–276. doi: 10.1016/0006-8993(73)90135-2. [DOI] [PubMed] [Google Scholar]
- Bunge R., Johnson M., Ross C. D. Nature and nurture in development of the autonomic neuron. Science. 1978 Mar 31;199(4336):1409–1416. doi: 10.1126/science.24273. [DOI] [PubMed] [Google Scholar]
- Burton H., Bunge R. P. A comparison of the uptake and release of [3H]norepinephrine in rat autonomic and sensory ganglia in tissue culture. Brain Res. 1975 Oct 24;97(1):157–162. doi: 10.1016/0006-8993(75)90924-5. [DOI] [PubMed] [Google Scholar]
- Chiappinelli V., Giacobini E., Pilar G., Uchimura H. Induction of cholinergic enzymes in chick ciliary ganglion and iris muscle cells during synapse formation. J Physiol. 1976 Jun;257(3):749–766. doi: 10.1113/jphysiol.1976.sp011395. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chun L. L., Patterson P. H. Role of nerve growth factor in the development of rat sympathetic neurons in vitro. I. Survival, growth, and differentiation of catecholamine production. J Cell Biol. 1977 Dec;75(3):694–704. doi: 10.1083/jcb.75.3.694. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chun L. L., Patterson P. H. Role of nerve growth factor in the development of rat sympathetic neurons in vitro. II. Developmental studies. J Cell Biol. 1977 Dec;75(3):705–711. doi: 10.1083/jcb.75.3.705. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chun L. L., Patterson P. H. Role of nerve growth factor in the development of rat sympathetic neurons in vitro. III. Effect on acetylcholine production. J Cell Biol. 1977 Dec;75(3):712–718. doi: 10.1083/jcb.75.3.712. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cowan W. M., Wann D. F. A computer system for the measurement of cell and nuclear sizes. J Microsc. 1973 Dec;99(3):331–348. doi: 10.1111/j.1365-2818.1973.tb04630.x. [DOI] [PubMed] [Google Scholar]
- Fonnum F. Isolation of choline esters from aqueous solutions by extraction with sodium tetraphenylboron in organic solvents. Biochem J. 1969 Jun;113(2):291–298. doi: 10.1042/bj1130291. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Furshpan E. J., MacLeish P. R., O'Lague P. H., Potter D. D. Chemical transmission between rat sympathetic neurons and cardiac myocytes developing in microcultures: evidence for cholinergic, adrenergic, and dual-function neurons. Proc Natl Acad Sci U S A. 1976 Nov;73(11):4225–4229. doi: 10.1073/pnas.73.11.4225. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Godfrey D. A., Williams A. D., Matschinsky F. M. Quantitative histochemical mapping of enzymes of the cholinergic system in cat cochlear nucleus. J Histochem Cytochem. 1977 Jun;25(6):397–416. doi: 10.1177/25.6.69653. [DOI] [PubMed] [Google Scholar]
- Goodman R., Oesch F., Thoenen H. Changes in enzyme patterns produced by high potassium concentration and dibutyryl cyclic AMP in organ cultures of sympathetic ganglia. J Neurochem. 1974 Aug;23(2):369–378. doi: 10.1111/j.1471-4159.1974.tb04368.x. [DOI] [PubMed] [Google Scholar]
- Hendry I. A. Cell division in the developing sympathetic nervous system. J Neurocytol. 1977 Jun;6(3):299–309. doi: 10.1007/BF01175193. [DOI] [PubMed] [Google Scholar]
- Johnson M., Ross D., Meyers M., Rees R., Bunge R., Wakshull E., Burton H. Synaptic vesicle cytochemistry changes when cultured sympathetic neurones develop cholinergic interactions. Nature. 1976 Jul 22;262(5566):308–310. doi: 10.1038/262308a0. [DOI] [PubMed] [Google Scholar]
- KLINGMAN G. I. CATECHOLAMINE LEVELS AND DOPA-DECARBOXYLASE ACTIVITY IN PERIPHERAL ORGANS AND ADRENERGIC TISSUES IN THE RAT AFTER IMMUNOSYMPATHECTOMY. J Pharmacol Exp Ther. 1965 Apr;148:14–21. [PubMed] [Google Scholar]
- Kanerva L., Teräväinen H. Electron microscopy of the paracervical (Frankenhäuser) ganglion of the adult rat. Z Zellforsch Mikrosk Anat. 1972;129(2):161–177. doi: 10.1007/BF00306933. [DOI] [PubMed] [Google Scholar]
- Karnovsky M. J. The ultrastructural basis of capillary permeability studied with peroxidase as a tracer. J Cell Biol. 1967 Oct;35(1):213–236. doi: 10.1083/jcb.35.1.213. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ko C. P., Burton H., Johnson M. I., Bunge R. P. Synaptic transmission between rat superior cervical ganglion neurons in dissociated cell cultures. Brain Res. 1976 Dec 3;117(3):461–485. doi: 10.1016/0006-8993(76)90753-8. [DOI] [PubMed] [Google Scholar]
- Landis S. C. Rat sympathetic neurons and cardiac myocytes developing in microcultures: correlation of the fine structure of endings with neurotransmitter function in single neurons. Proc Natl Acad Sci U S A. 1976 Nov;73(11):4220–4224. doi: 10.1073/pnas.73.11.4220. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Landmesser L., Pilar G. Synaptic transmission and cell death during normal ganglionic development. J Physiol. 1974 Sep;241(3):737–749. doi: 10.1113/jphysiol.1974.sp010681. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Larramendi L. M., Fickenscher L., Lemkey-Johnston N. Synaptic vesicles of inhibitory and excitatory TERMINALS IN THE CEREBELLUM. Science. 1967 May 19;156(3777):967–969. doi: 10.1126/science.156.3777.967. [DOI] [PubMed] [Google Scholar]
- MCCAMAN R. E., HUNT J. M. MICRODETERMINATION OF CHOLINE ACETYLASE IN NERVOUS TISSUE. J Neurochem. 1965 Apr;12:253–259. doi: 10.1111/j.1471-4159.1965.tb06762.x. [DOI] [PubMed] [Google Scholar]
- Mains R. E., Patterson P. H. Primary cultures of dissociated sympathetic neurons. I. Establishment of long-term growth in culture and studies of differentiated properties. J Cell Biol. 1973 Nov;59(2 Pt 1):329–345. doi: 10.1083/jcb.59.2.329. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mains R. E., Patterson P. H. Primary cultures of dissociated sympathetic neurons. II. Initial studies on catecholamine metabolism. J Cell Biol. 1973 Nov;59(2 Pt 1):346–360. doi: 10.1083/jcb.59.2.346. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mains R. E., Patterson P. H. Primary cultures of dissociated sympathetic neurons. III. Changes in metabolism with age in culture. J Cell Biol. 1973 Nov;59(2 Pt 1):361–366. doi: 10.1083/jcb.59.2.361. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McCaman M. W., McCaman R. E., Lees G. J. Liquid cation exchange--a basis for sensitive radiometric assays for aromatic amino acid decarboxylases. Anal Biochem. 1972 Jan;45(1):242–252. doi: 10.1016/0003-2697(72)90024-3. [DOI] [PubMed] [Google Scholar]
- Nurse C. A., O'Lague P. H. Formation of cholinergic synapses between dissociated sympathetic neurons and skeletal myotubes of the rat in cell culture. Proc Natl Acad Sci U S A. 1975 May;72(5):1955–1959. doi: 10.1073/pnas.72.5.1955. [DOI] [PMC free article] [PubMed] [Google Scholar]
- O'Lague P. H., Furshpan E. J., Potter D. D. Studies on rat sympathetic neurons developing in cell culture. II. Synaptic mechanisms. Dev Biol. 1978 Dec;67(2):404–423. doi: 10.1016/0012-1606(78)90209-9. [DOI] [PubMed] [Google Scholar]
- O'Lague P. H., Obata K., Claude P., Furshpan E. J., Potter D. D. Evidence for cholinergic synapses between dissociated rat sympathetic neurons in cell culture. Proc Natl Acad Sci U S A. 1974 Sep;71(9):3602–3606. doi: 10.1073/pnas.71.9.3602. [DOI] [PMC free article] [PubMed] [Google Scholar]
- O'Lague P. H., Potter D. D., Furshpan E. J. Studies on rat sympathetic neurons developing in cell culture. III. Cholinergic transmission. Dev Biol. 1978 Dec;67(2):424–443. doi: 10.1016/0012-1606(78)90210-5. [DOI] [PubMed] [Google Scholar]
- Patterson P. H., Chun L. L. The induction of acetylcholine synthesis in primary cultures of dissociated rat sympathetic neurons. I. Effects of conditioned medium. Dev Biol. 1977 Apr;56(2):263–280. doi: 10.1016/0012-1606(77)90269-x. [DOI] [PubMed] [Google Scholar]
- Patterson P. H., Chun L. L. The induction of acetylcholine synthesis in primary cultures of dissociated rat sympathetic neurons. II. Developmental aspects. Dev Biol. 1977 Oct 15;60(2):473–481. doi: 10.1016/0012-1606(77)90144-0. [DOI] [PubMed] [Google Scholar]
- Patterson P. H., Chun L. L. The influence of non-neuronal cells on catecholamine and acetylcholine synthesis and accumulation in cultures of dissociated sympathetic neurons. Proc Natl Acad Sci U S A. 1974 Sep;71(9):3607–3610. doi: 10.1073/pnas.71.9.3607. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Patterson P. H., Reichardt L. F., Chun L. L. Biochemical studies on the development of primary sympathetic neurons in cell culture. Cold Spring Harb Symp Quant Biol. 1976;40:389–397. doi: 10.1101/sqb.1976.040.01.037. [DOI] [PubMed] [Google Scholar]
- RICHARDSON K. C. THE FINE STRUCTURE OF THE ALBINO RABBIT IRIS WITH SPECIAL REFERENCE TO THE IDENTIFICATION OF ADRENERGIC AND CHOLINERGIC NERVES AND NERVE ENDINGS IN ITS INTRINSIC MUSCLES. Am J Anat. 1964 Mar;114:173–205. doi: 10.1002/aja.1001140202. [DOI] [PubMed] [Google Scholar]
- Rees R., Bunge R. P. Morphological and cytochemical studies of synapses formed in culture between isolated rat superior cervical ganglion neurons. J Comp Neurol. 1974 Sep 1;157(1):1–11. doi: 10.1002/cne.901570102. [DOI] [PubMed] [Google Scholar]
- Reichardt L. F., Patterson P. H. Neurotransmitter synthesis and uptake by isolated sympathetic neurones in microcultures. Nature. 1977 Nov 10;270(5633):147–151. doi: 10.1038/270147a0. [DOI] [PubMed] [Google Scholar]
- Ross C. D., McDougal D. B., Jr The distribution of choline acetyltransferase activity in vertebrate retina. J Neurochem. 1976 Mar;26(3):521–526. doi: 10.1111/j.1471-4159.1976.tb01505.x. [DOI] [PubMed] [Google Scholar]
- Ross D., Cohen A. I., McDougal D. B., Jr Choline acetyltransferase and acetylcholine esterase activities in normal and biologically fractionated mouse retinas. Invest Ophthalmol. 1975 Oct;14(10):756–761. [PubMed] [Google Scholar]
- Thoenen H. Comparison between the effect of neuronal activity and nerve growth factor on the enzymes involved in the synthesis of norepinephrine. Pharmacol Rev. 1972 Jun;24(2):255–267. [PubMed] [Google Scholar]
- Uno H., Hökfelt T. Catecholamine-containing nerve terminals of the eccrine sweat glands of macaques. Cell Tissue Res. 1975;158(1):1–13. doi: 10.1007/BF00219948. [DOI] [PubMed] [Google Scholar]
- Wakshull E., Johnson M. I., Burton H. Persistence of an amine uptake system in cultured rat sympathetic neurons which use acetylcholine as their transmitter. J Cell Biol. 1978 Oct;79(1):121–131. doi: 10.1083/jcb.79.1.121. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wakshull E., Johnson M. I., Burton H. Postnatal rat sympathetic neurons in culture. I. A comparison with embryonic neurons. J Neurophysiol. 1979 Sep;42(5):1410–1425. doi: 10.1152/jn.1979.42.5.1410. [DOI] [PubMed] [Google Scholar]
- Wakshull E., Johnson M. I., Burton H. Postnatal rat sympathetic neurons in culture. II. Synaptic transmission by postnatal neurons. J Neurophysiol. 1979 Sep;42(5):1426–1436. doi: 10.1152/jn.1979.42.5.1426. [DOI] [PubMed] [Google Scholar]
- Walicke P. A., Campenot R. B., Patterson P. H. Determination of transmitter function by neuronal activity. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5767–5771. doi: 10.1073/pnas.74.12.5767. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weil D. E., Busby W. H., Jr, McIlwain D. L. Choline acetyltransferase activity in large ventral spinal neurons. J Neurochem. 1977 Nov;29(5):847–852. doi: 10.1111/j.1471-4159.1977.tb10727.x. [DOI] [PubMed] [Google Scholar]
- Yamauchi A., Lever J. D., Kemp K. W. Catecholamine loading and depletion in the rat superior cervical ganglion. A formol fluorescence and enzyme histochemical study with numerical assessments. J Anat. 1973 Feb;114(Pt 2):271–282. [PMC free article] [PubMed] [Google Scholar]
- Yoshida M. Vergleichende elektronenmikroskopische Untersuchungen an sympathischen und parasympathischen Ganglien des Goldhamsters. Z Zellforsch Mikrosk Anat. 1968 May 2;88(1):138–144. [PubMed] [Google Scholar]