Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1980 Apr 1;85(1):122–135. doi: 10.1083/jcb.85.1.122

Characterization of ducts isolated from the pancreas of the rat

PMCID: PMC2110588  PMID: 6154056

Abstract

Rat pancreases were minced and treated with collagenase or collagenase supplemented with chymotrypsin to yield a mixture of ducts, islets, acinar cell clusters, blood vessels, and nerves. Histologically and ultrastructurally, the isolated tissues resembled their in situ counterparts in most respects, the major difference being the destruction of the basement membranes (basal laminae). Ducts ranging in size from the common bile/main pancreatic duct to the intercalated ducts were identified in the digest, although interlobular ducts were most frequently observed. Acinar tissue fragments were separated from nonacinar structures either by flotation through discontinuous gradients of Ficoll or by sieving, the latter technique being the more efficient. Common bile/main ducts, interlobular ducts, and blood vessels were selected manually from the nonacinar fractions. Biochemical analyses showed that the entire nonacinar fraction, as well as isolated ducts and blood vessels, contained larger alkaline phosphatase, carbonic anhydrase, and Mg-ATPase specific activities than acinar tissue, whereas acinar tissue contained larger gamma- glutamyltranspeptidase and amylase activities. However, greater than 63% of the total recovered activity of each enzyme was associated with the acinar tissue. Both the association of the majority of each of these enzyme activities with the acinar tissue and the similarity in specific activities associated with ducts and blood vessels indicate that none of the enzymes tested is a unique marker for interlobular and larger ducts of the pancreas of the rat.

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amsterdam A., Jamieson J. D. Structural and functional characterization of isolated pancreatic exocrine cells. Proc Natl Acad Sci U S A. 1972 Oct;69(10):3028–3032. doi: 10.1073/pnas.69.10.3028. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Amsterdam A., Jamieson J. D. Studies on dispersed pancreatic exocrine cells. I. Dissociation technique and morphologic characteristics of separated cells. J Cell Biol. 1974 Dec;63(3):1037–1056. doi: 10.1083/jcb.63.3.1037. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. BIRNBAUM D., HOLLANDER F. Inhibition of pancreatic secretion by the carbonic anhydrase inhibitor 2-acetylamino-1,3,4-thiadiazole-5-sulfonamide, diamox (#6063). Am J Physiol. 1953 Aug;174(2):191–195. doi: 10.1152/ajplegacy.1953.174.2.191. [DOI] [PubMed] [Google Scholar]
  4. Bolender R. P. Stereological analysis of the guinea pig pancreas. I. Analytical model and quantitative description of nonstimulated pancreatic exocrine cells. J Cell Biol. 1974 May;61(2):269–287. doi: 10.1083/jcb.61.2.269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Boquist L., Hagström S. Carbonic anhydrase activity in mouse endocrine pancreas. Acta Pathol Microbiol Scand A. 1979 May;87A(3):157–164. doi: 10.1111/j.1699-0463.1979.tb00037.x. [DOI] [PubMed] [Google Scholar]
  6. Borgers M. The cytochemical application of new potent inhibitors of alkaline phosphatases. J Histochem Cytochem. 1973 Sep;21(9):812–824. doi: 10.1177/21.9.812. [DOI] [PubMed] [Google Scholar]
  7. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  8. Churg A., Richter W. R. Histochemical distribution of carbonic anhydrase after ligation of the pancreatic duct. Am J Pathol. 1972 Jul;68(1):23–30. [PMC free article] [PubMed] [Google Scholar]
  9. Fölsch U. R., Creutzfeldt W. Pancreatic duct cells in rats: secretory studies in response to secretin, cholecystokinin-pancreozymin, and gastrin in vivo. Gastroenterology. 1977 Nov;73(5):1053–1059. [PubMed] [Google Scholar]
  10. Gemmell R. T., Heath T. Structure and function of the biliary and pancreatic tracts of the sheep. J Anat. 1973 Jul;115(Pt 2):221–236. [PMC free article] [PubMed] [Google Scholar]
  11. Githens S., Pictet R., Phelps P., Rutter W. J. 5-bromodeoxyuridine may alter the differentiative program of the embryonic pancreas. J Cell Biol. 1976 Nov;71(2):341–356. doi: 10.1083/jcb.71.2.341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. ICHIKAWA A. FINE STRUCTURAL CHANGES IN RESPONSE TO HORMONAL STIMULATION OF THE PERFUSED CANINE PANCREAS. J Cell Biol. 1965 Mar;24:369–385. doi: 10.1083/jcb.24.3.369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Jones R. T., Barrett L. A., van Haaften C., Harris C. C., Trump B. F. Carcinogenesis in the pancreas. I. Long-term explant culture of human and bovine pancreatic ducts. J Natl Cancer Inst. 1977 Mar;58(3):557–565. doi: 10.1093/jnci/58.3.557. [DOI] [PubMed] [Google Scholar]
  14. Katsuyama T., Spicer S. S. The surface characteristics of the plasma membrane of the exocrine pancreas. Am J Anat. 1977 Apr;148(4):535–554. doi: 10.1002/aja.1001480409. [DOI] [PubMed] [Google Scholar]
  15. Kempen H. J., de Pont J. J., Bonting S. L. Rat pancreas adenylate cyclase V. Its presence in isolated rat pancreatic acinar cells. Biochim Biophys Acta. 1977 Feb 28;496(2):521–531. doi: 10.1016/0304-4165(77)90333-6. [DOI] [PubMed] [Google Scholar]
  16. Koenig C. S., Santelices L. C., Vial J. D. Cytochemical study of the distribution of adenosine triphosphatase in the pancreas of the dog. J Histochem Cytochem. 1976 Oct;24(10):1065–1075. doi: 10.1177/24.10.135806. [DOI] [PubMed] [Google Scholar]
  17. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  18. Lakshmanan M. C., Kahng M. W., Jones R. T. Enzymic profiles of bovine pancreatic ductal and acinar tissues. Enzyme. 1979;24(2):107–112. doi: 10.1159/000458638. [DOI] [PubMed] [Google Scholar]
  19. Lernmark A., Nathans A., Steiner D. F. Preparation and characterization of plasma membrane-enriched fractions from rat pancreatic islets. J Cell Biol. 1976 Nov;71(2):606–623. doi: 10.1083/jcb.71.2.606. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lightwood R., Reber H. A. Micropuncture study of pancreatic secretion in the cat. Gastroenterology. 1977 Jan;72(1):61–66. [PubMed] [Google Scholar]
  21. Lonergan T. A., Sargent M. L. Regulation of the Photosynthesis Rhythm in Euglena gracilis: I. Carbonic Anhydrase and Glyceraldehyde-3-Phosphate Dehydrogenase Do Not Regulate the Photosynthesis Rhythm. Plant Physiol. 1978 Feb;61(2):150–153. doi: 10.1104/pp.61.2.150. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. MAREN T. H. A simplified micromethod for the determination of carbonic anhydrase and its inhibitors. J Pharmacol Exp Ther. 1960 Sep;130:26–29. [PubMed] [Google Scholar]
  23. MCMINN R. M., KUGLER J. H. The glands of the bile and pancreatic ducts: autoradiographic and histochemical studies. J Anat. 1961 Jan;95:1–11. [PMC free article] [PubMed] [Google Scholar]
  24. MOLLENHAUER H. H. PLASTIC EMBEDDING MIXTURES FOR USE IN ELECTRON MICROSCOPY. Stain Technol. 1964 Mar;39:111–114. [PubMed] [Google Scholar]
  25. MOSKALEWSKI S. ISOLATION AND CULTURE OF THE ISLETS OF LANGERHANS OF THE GUINEA PIG. Gen Comp Endocrinol. 1965 Jun;5:342–353. doi: 10.1016/0016-6480(65)90059-6. [DOI] [PubMed] [Google Scholar]
  26. Maylié-Pfenninger M. F., Jamieson J. D. Distribution of cell surface saccharides on pancreatic cells. II. Lectin-labeling patterns on mature guinea pig and rat pancreatic cells. J Cell Biol. 1979 Jan;80(1):77–95. doi: 10.1083/jcb.80.1.77. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. ORLOWSKI M., MEISTER A. ISOLATION OF GAMMA-GLUTAMYL TRANSPEPTIDASE FROM HOG KIDNEY. J Biol Chem. 1965 Jan;240:338–347. [PubMed] [Google Scholar]
  28. REYNOLDS E. S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol. 1963 Apr;17:208–212. doi: 10.1083/jcb.17.1.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. RICHARDS C., FITZGERALD P. J., CAROL B., ROSENSTOCK L., LIPKIN L. SEGMENTAL DIVISION OF THE RAT PANCREAS FOR EXPERIMENTAL PROCEDURES. Lab Invest. 1964 Oct;13:1303–1321. [PubMed] [Google Scholar]
  30. Ridderstap A. S., Bonting S. L. Na+- K+-activated ATPase anc exocrine pancreatic secretion in vitro. Am J Physiol. 1969 Dec;217(6):1721–1727. doi: 10.1152/ajplegacy.1969.217.6.1721. [DOI] [PubMed] [Google Scholar]
  31. Schulz I., Yamagata A., Weske M. Micropuncture studies on the pancreas of the rabbit. Pflugers Arch. 1969;308(3):277–290. doi: 10.1007/BF00586559. [DOI] [PubMed] [Google Scholar]
  32. Scratcherd T., Case R. M. The secretion of electrolytes by the pancreas. Am J Clin Nutr. 1973 Mar;26(3):326–339. doi: 10.1093/ajcn/26.3.326. [DOI] [PubMed] [Google Scholar]
  33. Simon B., Kinne R., Sachs G. The presence of a HCO 3 - -ATPase in pancreatic tissue. Biochim Biophys Acta. 1972 Sep 1;282(1):293–300. doi: 10.1016/0005-2736(72)90335-5. [DOI] [PubMed] [Google Scholar]
  34. Singh M., Parks N. M., Webster P. D., 3rd An in vitro study of pancreatic ductal cells. Proc Soc Exp Biol Med. 1978 Jan;157(1):23–28. doi: 10.3181/00379727-157-39982. [DOI] [PubMed] [Google Scholar]
  35. Stoner G. D., Harris C. C., Bostwick D. G., Jones R. T., Trump B. F., Kingsbury E. W., Fineman E., Newkirk C. Isolation and characterization of epithelial cells from bovine pancreatic duct. In Vitro. 1978 Jul;14(7):581–590. doi: 10.1007/BF02617917. [DOI] [PubMed] [Google Scholar]
  36. Swanson C. H., Solomon A. K. Micropuncture analysis of the cellular mechanisms of electrolyte secretion by the in vitro rabbit pancreas. J Gen Physiol. 1975 Jan;65(1):22–45. doi: 10.1085/jgp.65.1.22. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Tate S. S., Meister A. Interaction of gamma-glutamyl transpeptidase with amino acids, dipeptides, and derivatives and analogs of glutathione. J Biol Chem. 1974 Dec 10;249(23):7593–7602. [PubMed] [Google Scholar]
  38. Wizemann V., Christian A. L., Wiechmann J., Schulz I. The distribution of membrane bound enzymes in the acini and ducts of the cat pancreas. Pflugers Arch. 1974 Feb 18;347(1):39–47. doi: 10.1007/BF00587053. [DOI] [PubMed] [Google Scholar]
  39. van Amelsvoort J. M., de Pont J. J., Bonting S. L. Is there a plasma membrane-located anion-sensitive ATPase? Biochim Biophys Acta. 1977 Apr 18;466(2):283–301. doi: 10.1016/0005-2736(77)90225-5. [DOI] [PubMed] [Google Scholar]
  40. van Os C. H., Mircheff A. K., Wright E. M. Distribution of bicarbonate-stimulated ATPase in rat intestinal epithelium. J Cell Biol. 1977 Apr;73(1):257–260. doi: 10.1083/jcb.73.1.257. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES