Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1980 Apr 1;85(1):83–95. doi: 10.1083/jcb.85.1.83

Evidence that ADH-stimulated intramembrane particle aggregates are transferred from cytoplasmic to luminal membranes in toad bladder epithelial cells

PMCID: PMC2110591  PMID: 6767731

Abstract

In freeze-fracture (FF) preparations of ADH-stimulated toad urinary bladder, characteristic intramembrane particle (IMP) aggregates are seen on the protoplasmic (P) face of the luminal membrane of granular cells while complementary parallel grooves are found on the exoplasmic (E) face. These IMP aggregates specifically correlate with ADH-induced changes in water permeability. Tubular cytoplasmic structures whose membranes contain IMP aggregates which look identical to the IMP aggregates in the luminal membrane have also been described in granular cells from unstimulated and ADH-stimulated bladders. The diameter of these cytoplasmic structures (0.11 +/- 0.004 micrometers) corresponds to that of tubular invaginations of the luminal membrane seen in thin sections of ADH-treated bladders (0.13 +/- 0.005 micrometers). Continuity between the membranes of these cytoplasmic structures (which are not granules) and the luminal membrane has been directly observed in favorable cross-fractures. In FF preparations of the luminal membrane, these apparent fusion events are seen as round, ice-filled invaginations (0.13 +/- 0.01 micrometer Diam), of which about half have the characteristic ADH-associated aggregates near the point of membrane fusion. They are less numerous than, but linearly related to, the number of aggregates counted in the same preparations (n = 78, r = 0.71, P less than 0.01). These observations suggest that the IMP aggregates seen in luminal membrane after ADH stimulation are transferred preformed by fusion of cytoplasmic with luminal membrane.

Full Text

The Full Text of this article is available as a PDF (1.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bourguet J., Chevalier J., Hugon J. S. Alterations in membrane-associated particle distribution during antidiuretic challenge in frog urinary bladder epithelium. Biophys J. 1976 Jun;16(6):627–639. doi: 10.1016/S0006-3495(76)85717-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Chevalier J., Bourguet J., Hugon J. S. Membrane associated particles: distribution in frog urinary bladder epithelium at rest and after oxytocin treatment. Cell Tissue Res. 1974;152(2):129–140. doi: 10.1007/BF00224690. [DOI] [PubMed] [Google Scholar]
  3. Herzog V., Farquhar M. G. Luminal membrane retrieved after exocytosis reaches most golgi cisternae in secretory cells. Proc Natl Acad Sci U S A. 1977 Nov;74(11):5073–5077. doi: 10.1073/pnas.74.11.5073. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Humbert F., Montesano R., Grosso A., de Sousa R. C., Orci L. Particle aggregates in plasma and intracellular membranes of toad bladder (granular cell). Experientia. 1977 Oct 15;33(10):1364–1367. doi: 10.1007/BF01920184. [DOI] [PubMed] [Google Scholar]
  5. Kachadorian W. A., Casey C., DiScala V. A. Time course of ADH-induced intramembranous particle aggregation in toad urinary bladder. Am J Physiol. 1978 Jun;234(6):F461–F465. doi: 10.1152/ajprenal.1978.234.6.F461. [DOI] [PubMed] [Google Scholar]
  6. Kachadorian W. A., Ellis S. J., Muller J. Possible roles for microtubules and microfilaments in ADH action on toad urinary bladder. Am J Physiol. 1979 Jan;236(1):F14–F20. doi: 10.1152/ajprenal.1979.236.1.F14. [DOI] [PubMed] [Google Scholar]
  7. Kachadorian W. A., Levine S. D., Wade J. B., Di Scala V. A., Hays R. M. Relationship of aggregated intramembranous particles to water permeability in vasopressin-treated toad urinary bladder. J Clin Invest. 1977 Mar;59(3):576–581. doi: 10.1172/JCI108673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kachadorian W. A., Muller J., Rudich S. W., DiScala V. A. Temperature dependence of ADH-induced water flow and intramembranous particle aggregates in toad bladder. Science. 1979 Aug 31;205(4409):910–913. doi: 10.1126/science.112678. [DOI] [PubMed] [Google Scholar]
  9. Kachadorian W. A., Wade J. B., DiScala V. A. Vasopressin: induced structural change in toad bladder luminal membrane. Science. 1975 Oct 3;190(4209):67–69. doi: 10.1126/science.809840. [DOI] [PubMed] [Google Scholar]
  10. Kachadorian W. A., Wade J. B., Uiterwyk C. C., DiScala V. A. Membrane structural and functional responses to vasopressin in toad bladder. J Membr Biol. 1977 Jan 28;30(4):381–401. doi: 10.1007/BF01869678. [DOI] [PubMed] [Google Scholar]
  11. Malaisse W. J., Malaisse-Lagae F., Van Obberghen E., Somers G., Devis G., Ravazzola M., Orci L. Role of microtubules in the phasic pattern of insulin release. Ann N Y Acad Sci. 1975 Jun 30;253:630–652. doi: 10.1111/j.1749-6632.1975.tb19234.x. [DOI] [PubMed] [Google Scholar]
  12. Masur S. K., Holtzman E., Schwartz I. L., Walter R. Correlation between pinocytosis and hydroosmosis induced by neurohypophyseal hormones and mediated by adenosine 3',5'-cyclic monophosphate. J Cell Biol. 1971 Jun;49(3):582–594. doi: 10.1083/jcb.49.3.582. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Masur S. K., Holtzman E., Walter R. Hormone-stimulated exocytosis in the toad urinary bladder. Some possible implications for turnover of surface membranes. J Cell Biol. 1972 Jan;52(1):211–219. doi: 10.1083/jcb.52.1.211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. McIntyre J. A., Gilula N. B., Karnovsky M. J. Cryoprotectant-induced redistribution of intramembranous particles in mouse lymphocytes. J Cell Biol. 1974 Jan;60(1):192–203. doi: 10.1083/jcb.60.1.192. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Møllgård K., Rostgaard J. Morphological aspects of some sodium transporting epithelia suggesting a transcellular pathway via elements of endoplasmic reticulum. J Membr Biol. 1978;40(Spec No):71–89. doi: 10.1007/BF02025999. [DOI] [PubMed] [Google Scholar]
  16. Pinto da Silva P. Translational mobility of the membrane intercalated particles of human erythrocyte ghosts. pH-dependent, reversible aggregation. J Cell Biol. 1972 Jun;53(3):777–787. doi: 10.1083/jcb.53.3.777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Reaven E. P., Reaven G. M. A quantitative ultrastructural study of microtubule content and secretory granule accumulation in parathyroid glands of phosphate- and colchicine-treated rats. J Clin Invest. 1975 Jul;56(1):49–55. doi: 10.1172/JCI108078. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Reaven E., Maffly R., Taylor A. Evidence for involvement of microtubules in the action of vasopressin in toad urinary bladder. III. Morphological studies on the content and distribution of microtubules in bladder epithelial cells. J Membr Biol. 1978 May 3;40(3):251–267. doi: 10.1007/BF02002971. [DOI] [PubMed] [Google Scholar]
  19. Speth V., Wunderlich F. Membranes of Tetrahymena. II. Direct visualization of reversible transitions in biomembrane structure induced by temperature. Biochim Biophys Acta. 1973 Feb 16;291(3):621–628. doi: 10.1016/0005-2736(73)90467-7. [DOI] [PubMed] [Google Scholar]
  20. Wade J. B. Membrane structural specialization of the toad urinary bladder revealed by the freeze-fracture technique. III. Location, structure and vasopressin dependence of intramembrane particle arrays. J Membr Biol. 1978;40(Spec No):281–296. doi: 10.1007/BF02026011. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES