Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1980 Apr 1;85(1):1–8. doi: 10.1083/jcb.85.1.1

Dexamethasone regulates the program of secretory glycoprotein synthesis in hepatoma tissue culture cells

H Baumann, TD Gelehrter, D Doyle
PMCID: PMC2110595  PMID: 6245097

Abstract

The secretory glycoproteins synthesized by hepatoma tissue culture (HTC) cells were resolved by two-dimensional polyacrylamide gel electrophoresis of media from cells that were grown in the presence of [(3)H]fucose. These cells synthesize and secrete a complex set of fucose-containing glycoproteins. These secretory glycoproteins are distinct from those glycoproteins present in the plasma membrane of HTC cells. Incubation of HTC cells with dexamethasone has a pronounced effect on the quality and quantity (denoted here as the program) of secretory protein synthesis, as assayed by the short-term incorporation of labeled mannose, fucose, or methionine. The synthesis of two mannose- and fucose- containing glycoprotein series, one of 50,000 mol wt and a more heterogeneous series with mol wt of 35,000-50,000, is increased to a high level by the hormone; conversely, the synthesis of other secretory proteins, particularly one with mol wt of 70,000, is decreased or stopped completely. The synthesis of some major secretory proteins is not affected by the hormone. Dexamethasone has less of an effect on the composition of either total cell membrane glycoprotein or plasma membrane glycoprotein. But there is a decrease in the synthesis of a major membrane glycoprotein series with mol wt of 140,000. These effects of dexamethasone are relatively specific to HTC cells. Neither Reuber H-35 cells nor primary cultures of rat hepatocytes show the same response to the steroid. Two variant HTC cell lines, which were selected for their resistance to dexamethasone inhibition of extracellular plasminogen activator activity, respond only partially to the steroid-induced regulation of the secretory and membrane glycoproteins.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ames G. F., Nikaido K. Two-dimensional gel electrophoresis of membrane proteins. Biochemistry. 1976 Feb 10;15(3):616–623. doi: 10.1021/bi00648a026. [DOI] [PubMed] [Google Scholar]
  2. Ballard P. L., Tomkins G. M. Hormone induced modification of the cell surface. Nature. 1969 Oct 25;224(5217):344–345. doi: 10.1038/224344a0. [DOI] [PubMed] [Google Scholar]
  3. Baumann H., Doyle D. Localization of membrane glycoproteins by in situ neuraminidase treatment of rat hepatoma tissue culture cells and two-dimensional gel electrophoretic analysis of the modified proteins. J Biol Chem. 1979 Apr 10;254(7):2542–2550. [PubMed] [Google Scholar]
  4. Baumann H., Doyle D. Turnover of plasma membrane glycoproteins and glycolipids of hepatoma tissue culture cells. J Biol Chem. 1978 Jun 25;253(12):4408–4418. [PubMed] [Google Scholar]
  5. Blobel G., Dobberstein B. Transfer of proteins across membranes. I. Presence of proteolytically processed and unprocessed nascent immunoglobulin light chains on membrane-bound ribosomes of murine myeloma. J Cell Biol. 1975 Dec;67(3):835–851. doi: 10.1083/jcb.67.3.835. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Blobel G., Dobberstein B. Transfer of proteins across membranes. II. Reconstitution of functional rough microsomes from heterologous components. J Cell Biol. 1975 Dec;67(3):852–862. doi: 10.1083/jcb.67.3.852. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bonner W. M., Laskey R. A. A film detection method for tritium-labelled proteins and nucleic acids in polyacrylamide gels. Eur J Biochem. 1974 Jul 1;46(1):83–88. doi: 10.1111/j.1432-1033.1974.tb03599.x. [DOI] [PubMed] [Google Scholar]
  8. Chen C. L., Feigelson P. Glucocorticoid induction of alpha2u-globulin protein synthesis and its mRNA in rat hepatocytes in vitro. J Biol Chem. 1978 Nov 10;253(21):7880–7885. [PubMed] [Google Scholar]
  9. Doyle D., Baumann H. Turnover of the plasma membrane of mammalian cells. Life Sci. 1979 Mar 12;24(11):951–966. doi: 10.1016/0024-3205(79)90313-8. [DOI] [PubMed] [Google Scholar]
  10. Fredin B. L., Seifert S. C., Gelehrter T. D. Dexamethasone-induced adhesion in hepatoma cells: the role of plasminogen activator. Nature. 1979 Jan 25;277(5694):312–313. doi: 10.1038/277312a0. [DOI] [PubMed] [Google Scholar]
  11. Ivarie R. D., O'Farrell P. H. The glucocorticoid domain: steroid-mediated changes in the rate of synthesis of rat hepatoma proteins. Cell. 1978 Jan;13(1):41–55. doi: 10.1016/0092-8674(78)90136-8. [DOI] [PubMed] [Google Scholar]
  12. Kiely M. L., McKnight G. S., Schimke R. T. Studies on the attachment of carbohydrate to ovalbumin nascent chains in hen oviduct. J Biol Chem. 1976 Sep 25;251(18):5490–5495. [PubMed] [Google Scholar]
  13. Kornfeld S., Li E., Tabas I. The synthesis of complex-type oligosaccharides. II. Characterization of the processing intermediates in the synthesis of the complex oligosaccharide units of the vesicular stomatitis virus G protein. J Biol Chem. 1978 Nov 10;253(21):7771–7778. [PubMed] [Google Scholar]
  14. McDonald R. A., Gelehrter T. D. Gllcocorticoid inhibition of amino acid transport in rat hepatoma cells. Biochem Biophys Res Commun. 1977 Oct 24;78(4):1304–1310. doi: 10.1016/0006-291x(77)91434-6. [DOI] [PubMed] [Google Scholar]
  15. Novikoff A. B. The endoplasmic reticulum: a cytochemist's view (a review). Proc Natl Acad Sci U S A. 1976 Aug;73(8):2781–2787. doi: 10.1073/pnas.73.8.2781. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Palade G. Intracellular aspects of the process of protein synthesis. Science. 1975 Aug 1;189(4200):347–358. doi: 10.1126/science.1096303. [DOI] [PubMed] [Google Scholar]
  17. Palmiter R. D., Gagnon J., Walsh K. A. Ovalbumin: a secreted protein without a transient hydrophobic leader sequence. Proc Natl Acad Sci U S A. 1978 Jan;75(1):94–98. doi: 10.1073/pnas.75.1.94. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Palmiter R. D. Quantitation of parameters that determine the rate of ovalbumin synthesis. Cell. 1975 Mar;4(3):189–189. doi: 10.1016/0092-8674(75)90167-1. [DOI] [PubMed] [Google Scholar]
  19. Robbins P. W., Hubbard S. C., Turco S. J., Wirth D. F. Proposal for a common oligosaccharide intermediate in the synthesis of membrane glycoproteins. Cell. 1977 Dec;12(4):893–900. doi: 10.1016/0092-8674(77)90153-2. [DOI] [PubMed] [Google Scholar]
  20. Robins D. M., Schimke R. T. Differential effects of estrogen and progesterone on ovalbumin mRNA utilization. J Biol Chem. 1978 Dec 25;253(24):8925–8934. [PubMed] [Google Scholar]
  21. Seifert S. C., Gelehrter T. D. Isolation of rat hepatoma cell variants selectively resistant to dexamethasone inhibition of plasminogen activator. J Cell Physiol. 1979 Jun;99(3):333–341. doi: 10.1002/jcp.1040990308. [DOI] [PubMed] [Google Scholar]
  22. Seifert S. C., Gelehrter T. D. Mechanism of dexamethasone inhibition of plasminogen activator in rat hepatoma cells. Proc Natl Acad Sci U S A. 1978 Dec;75(12):6130–6133. doi: 10.1073/pnas.75.12.6130. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Spiro M. J., Spiro R. G., Bhoyroo V. D. Lipid-saccharide intermediates in glycoprotein biosynthesis. III. Comparison of oligosaccharide-lipids formed by slices from several tissues. J Biol Chem. 1976 Oct 25;251(20):6420–6425. [PubMed] [Google Scholar]
  24. Thompson E. B., Tomkins G. M., Curran J. F. Induction of tyrosine alpha-ketoglutarate transaminase by steroid hormones in a newly established tissue culture cell line. Proc Natl Acad Sci U S A. 1966 Jul;56(1):296–303. doi: 10.1073/pnas.56.1.296. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Tweto J., Doyle D. Turnover of the plasma membrane proteins of hepatoma tissue culture cells. J Biol Chem. 1976 Feb 10;251(3):872–882. [PubMed] [Google Scholar]
  26. Waechter C. J., Lennarz W. J. The role of polyprenol-linked sugars in glycoprotein synthesis. Annu Rev Biochem. 1976;45:95–112. doi: 10.1146/annurev.bi.45.070176.000523. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES