Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1980 Apr 1;85(1):136–145. doi: 10.1083/jcb.85.1.136

Regulation of the Chlamydomonas cell cycle by light and dark

PMCID: PMC2110596  PMID: 6767730

Abstract

By growing cells in alternating periods of light and darkness, we have found that the synchronization of phototrophically grown Chlamydomonas populations is regulated at two specific points in the cell cycle: the primary arrest (A) point, located in early G1, and the transition (T) point, located in mid-G1. At the A point, cell cycle progression becomes light dependent. At the T point, completion of the cycle becomes independent of light. Cells transferred from light to dark at cell cycle position between the two regulatory points enter a reversible resting state in which they remain viable and metabolically active, but do not progress through their cycles. The photosystem II inhibitor dichlorophenyldimethylurea (DCMU) mimics the A point block induced by darkness. This finding indicates that the A point block is mediated by a signal that operates through photosynthetic electron transport. Cells short of the T point will arrest in darkness although they contain considerable carbohydrate reserves. After the T point, a sharp increase occurs in starch degradation and in the endogenous respiration rate, indicating that some internal block to the availability of stored energy reserves has now been released, permitting cell cycle progression.

Full Text

The Full Text of this article is available as a PDF (812.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Armstrong J. J., Moll B., Surzycki S. J., Levine R. P. Genetic transcription and translation specifying chloroplast components in Chlamydomonas reinhardi. Biochemistry. 1971 Feb 16;10(4):692–701. doi: 10.1021/bi00780a022. [DOI] [PubMed] [Google Scholar]
  2. BERNSTEIN E. PHYSIOLOGY OF AN OBLIGATE PHOTOAUTOTROPH (CHLAMYDOMONAS MOEWUSII). I. CHARACTERISTICS OF SYNCHRONOUSLY AND RANDOMLY REPRODUCING CELLS AND AN HYPOTHESIS TO EXPLAIN THEIR POPULATION CURVES. J Protozool. 1964 Feb;11:56–74. doi: 10.1111/j.1550-7408.1964.tb01721.x. [DOI] [PubMed] [Google Scholar]
  3. Bassham J. A. The control of photosynthetic carbon metabolism. Science. 1971 May 7;172(3983):526–534. doi: 10.1126/science.172.3983.526. [DOI] [PubMed] [Google Scholar]
  4. Blamire J., Flechtner V. R., Sager R. Regulation of nuclear DNA replication by thechloroplast in Chlamydomonas. Proc Natl Acad Sci U S A. 1974 Jul;71(7):2867–2871. doi: 10.1073/pnas.71.7.2867. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chiang K. S., Sueoka N. Replication of chloroplast DNA in Chlamydomonas reinhardi during vegetative cell cycle: its mode and regulation. Proc Natl Acad Sci U S A. 1967 May;57(5):1506–1513. doi: 10.1073/pnas.57.5.1506. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Duynstee E. E., Schmidt R. R. Total starch and amylose levels during synchronous growth of Chlorella pyrenoidosa. Arch Biochem Biophys. 1967 Mar;119(1):382–386. doi: 10.1016/0003-9861(67)90469-9. [DOI] [PubMed] [Google Scholar]
  7. Epel B., Butler W. L. Cytochrome a3: destruction by light. Science. 1969 Oct 31;166(3905):621–622. doi: 10.1126/science.166.3905.621. [DOI] [PubMed] [Google Scholar]
  8. Gooday G. W. Control by light of starch degradation and cell-wall biosynthesis in Platymonas tetrathele. Biochem J. 1971 Jun;123(2):3P–3P. doi: 10.1042/bj1230003pb. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. HAMBURGER K., ZEUTHEN E. Synchronous divisions in Tetrahymena pyriformis as studied in an inorganic medium; the effect of 2,4-dinitrophenol. Exp Cell Res. 1957 Dec;13(3):443–453. doi: 10.1016/0014-4827(57)90074-5. [DOI] [PubMed] [Google Scholar]
  10. Hartwell L. H. Saccharomyces cerevisiae cell cycle. Bacteriol Rev. 1974 Jun;38(2):164–198. doi: 10.1128/br.38.2.164-198.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Howell S. H., Blaschko W. J., Drew C. M. Inhibitor effects during the cell cycle in Chlamydomonas reinhardtii. Determination of transition points in asynchronous cultures. J Cell Biol. 1975 Oct;67(1):126–135. doi: 10.1083/jcb.67.1.126. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Howell S. H., Naliboff J. A. Conditional mutants in Chlamydomonas reinhardtii blocked in the vegetative cell cycle. I. An analysis of cell cycle block points. J Cell Biol. 1973 Jun;57(3):760–772. doi: 10.1083/jcb.57.3.760. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Jarrett R. M., Edmunds L. N., Jr Persisting circadian rhythm of cell division in a photosynthetic mutant of Euglena. Science. 1970 Mar 27;167(3926):1730–1733. doi: 10.1126/science.167.3926.1730. [DOI] [PubMed] [Google Scholar]
  14. KATES J. R., JONES R. F. THE CONTROL OF GAMETIC DIFFERENTIATION IN LIQUID CULTURES OF CHLAMYDOMONAS. J Cell Physiol. 1964 Apr;63:157–164. doi: 10.1002/jcp.1030630204. [DOI] [PubMed] [Google Scholar]
  15. Nilausen K., Green H. Reversible arrest of growth in G1 of an established fibroblast line (3T3). Exp Cell Res. 1965 Oct;40(1):166–168. doi: 10.1016/0014-4827(65)90306-x. [DOI] [PubMed] [Google Scholar]
  16. Ohad I., Siekevitz P., Palade G. E. Biogenesis of chloroplast membranes. II. Plastid differentiation during greening of a dark-grown algal mutant (Chlamydomonas reinhardi). J Cell Biol. 1967 Dec;35(3):553–584. doi: 10.1083/jcb.35.3.553. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Pardee A. B. A restriction point for control of normal animal cell proliferation. Proc Natl Acad Sci U S A. 1974 Apr;71(4):1286–1290. doi: 10.1073/pnas.71.4.1286. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Paul D. Quiescent SV40 virus transformed 3T3 cells in culture. Biochem Biophys Res Commun. 1973 Aug 6;53(3):745–753. doi: 10.1016/0006-291x(73)90156-3. [DOI] [PubMed] [Google Scholar]
  19. SAGER R., GRANICK S. Nutritional studies with Chlamydomonas reinhardi. Ann N Y Acad Sci. 1953 Oct 14;56(5):831–838. doi: 10.1111/j.1749-6632.1953.tb30261.x. [DOI] [PubMed] [Google Scholar]
  20. Sager R. Genetic analysis of chloroplast DNA in Chlamydomonas. Adv Genet. 1977;19:287–340. doi: 10.1016/s0065-2660(08)60247-3. [DOI] [PubMed] [Google Scholar]
  21. Schor S., Siekevitz P., Palade G. E. Cyclic Changes in Thylakoid Membranes of Synchronized Chlamydomonas reinhardi. Proc Natl Acad Sci U S A. 1970 May;66(1):174–180. doi: 10.1073/pnas.66.1.174. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Stavis R. L., Hirschberg R. Phototaxis in Chlamydomonas reinhardtii. J Cell Biol. 1973 Nov;59(2 Pt 1):367–377. doi: 10.1083/jcb.59.2.367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Sueoka N., Chiang K. S., Kates J. R. Deoxyribonucleic acid replication in meiosis of Chlamydomonas reinhardi. I. Isotopic transfer experiments with a strain producing eight zoospores. J Mol Biol. 1967 Apr 14;25(1):47–66. doi: 10.1016/0022-2836(67)90278-1. [DOI] [PubMed] [Google Scholar]
  24. Tobey R. A., Ley K. D. Isoleucine-mediated regulation of genome repliction in various mammalian cell lines. Cancer Res. 1971 Jan;31(1):46–51. [PubMed] [Google Scholar]
  25. Vogel A., Pollack R. Isolation and characterization of revertant cell lines. VII. DNA synthesis and mitotic rate of serum-sensitive revertants in non-permissive growth conditions. J Cell Physiol. 1975 Feb;85(1):151–162. doi: 10.1002/jcp.1040850116. [DOI] [PubMed] [Google Scholar]
  26. Yen A., Fried J., Clarkson B. Alternative modes of population growth inhibition in a human lymphoid cell line growing in suspension. Exp Cell Res. 1977 Jul;107(2):325–341. doi: 10.1016/0014-4827(77)90355-x. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES