Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1980 Apr 1;85(1):18–32. doi: 10.1083/jcb.85.1.18

Distribution of immunoglobulin G receptors in the small intestine of the young rat

PMCID: PMC2110598  PMID: 7364873

Abstract

Conjugates of horseradish peroxidase (HRP) and immunoglobulin G (IgG) were used to map the distribution of cell surface receptors that can bind IgG at 0 degrees C within the small intestine of 10-12-d-old rats. Luminal receptors are present only within the duodenum and proximal jejunum. In these locations, receptors are limited to absorptive cells that line the upper portion of individual villi. Near villus tips, receptors are relatively evenly distributed over the entire luminal plasmalemma. In the midregion of villi, receptors are unevenly distributed over the luminal surface. Receptors (a) specifically bind rat and rabbit IgG, (b) recognize the Fc portion of the immunoglobulins, and (c) bind at pH 6.0 but not pH 7.4. To determine whether IgG receptors are confined to the luminal portion of the plasmalemma, intact epithelial cells were isolated from the proximal intestine of 10-12-d-old rats and incubated with HRP conjugates at 0 degree C. The specific binding of rat IgG-HRP to cells at pH 6.0 indicates that IgG receptors, which are functionally similar to those found on the luminal surface, are also present over the entire abluminal surface of absorptive cells. These results are consistent with the transport of IgG to the abluminal plasma membrane in the form of IgG-receptor complexes on the surface of vesicles. Exposure of these complexes to the serosal plasma, which is presumably at pH 7.4, would cause release of IgG from the receptors. To assess possible inward movement of vesicles from the abluminal surface after discharge of IgG, intravenously injected HRP was used as a space-filling tracer in the serosal plasma. HRP could be visualized within the coated and tubular vesicles responsible for transport of IgG in the opposite direction. These vesicles may, therefore, provide a pathway whereby receptors shuttle between the luminal and abluminal surfaces of cells.

Full Text

The Full Text of this article is available as a PDF (1.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson R. G., Goldstein J. L., Brown M. S. A mutation that impairs the ability of lipoprotein receptors to localise in coated pits on the cell surface of human fibroblasts. Nature. 1977 Dec 22;270(5639):695–699. doi: 10.1038/270695a0. [DOI] [PubMed] [Google Scholar]
  2. Baintner K., Jr, Juhász S. Mucosal proteolytic activity in the small intestine of suckling rats. Acta Physiol Acad Sci Hung. 1971;40(2):179–186. [PubMed] [Google Scholar]
  3. Baintner K., Jr The physiological role of colostral trypsin inhibitor: experiments with piglets and kittens. Acta Vet Acad Sci Hung. 1973 May;23(3):247–260. [PubMed] [Google Scholar]
  4. Borthistle B. K., Kubo R. T., Brown W. R., Grey H. M. Studies on receptors for IgG on epithelial cells of the rat intestine. J Immunol. 1977 Aug;119(2):471–476. [PubMed] [Google Scholar]
  5. Edidin M., Fambrough D. Fluidity of the surface of cultured muscle fibers. Rapid lateral diffusion of marked surface antigens. J Cell Biol. 1973 Apr;57(1):27–37. doi: 10.1083/jcb.57.1.27. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Edidin M., Weiss A. Antigen cap formation in cultured fibroblasts: a reflection of membrane fluidity and of cell motility. Proc Natl Acad Sci U S A. 1972 Sep;69(9):2456–2459. doi: 10.1073/pnas.69.9.2456. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Evans E. M., Wrigglesworth J. M., Burdett K., Pover W. F. Studies on epithelial cells isolated from guinea pig small intestine. J Cell Biol. 1971 Nov;51(21):452–464. doi: 10.1083/jcb.51.2.452. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Graham R. C., Jr, Karnovsky M. J. The early stages of absorption of injected horseradish peroxidase in the proximal tubules of mouse kidney: ultrastructural cytochemistry by a new technique. J Histochem Cytochem. 1966 Apr;14(4):291–302. doi: 10.1177/14.4.291. [DOI] [PubMed] [Google Scholar]
  9. Guyer R. L., Koshland M. E., Knopf P. M. Immunoglobulin binding by mouse intestinal epithelial cell receptors. J Immunol. 1976 Aug;117(2):587–593. [PubMed] [Google Scholar]
  10. HALLIDAY R. The absorption of antibodies from immune sera by the gut of the young rat. Proc R Soc Lond B Biol Sci. 1955 Mar 15;143(912):408–413. doi: 10.1098/rspb.1955.0020. [DOI] [PubMed] [Google Scholar]
  11. HALLIDAY R. The absorption of antibody from immune sera and from mixtures of sera by the gut of the young rat. Proc R Soc Lond B Biol Sci. 1958 Jan 1;148(930):92–103. doi: 10.1098/rspb.1958.0008. [DOI] [PubMed] [Google Scholar]
  12. Heuser J. E., Reese T. S. Evidence for recycling of synaptic vesicle membrane during transmitter release at the frog neuromuscular junction. J Cell Biol. 1973 May;57(2):315–344. doi: 10.1083/jcb.57.2.315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Jones E. A., Waldmann T. A. The mechanism of intestinal uptake and transcellular transport of IgG in the neonatal rat. J Clin Invest. 1972 Nov;51(11):2916–2927. doi: 10.1172/JCI107116. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Karnovsky M. J., Unanue E. R., Leventhal M. Ligand-induced movement of lymphocyte membrane macromolecules. II. Mapping of surface moieties. J Exp Med. 1972 Oct 1;136(4):907–930. doi: 10.1084/jem.136.4.907. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Knopf P. M., Parkhouse R. M., Lennox E. S. Biosynthetic units of an immunoglobulin heavy chain. Proc Natl Acad Sci U S A. 1967 Dec;58(6):2288–2295. doi: 10.1073/pnas.58.6.2288. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kraehenbuhl J. P., Campiche M. A. Early stages of intestinal absorption of specific antibiodies in the newborn. An ultrastructural, cytochemical, and immunological study in the pig, rat, and rabbit. J Cell Biol. 1969 Aug;42(2):345–365. doi: 10.1083/jcb.42.2.345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. LUFT J. H. Improvements in epoxy resin embedding methods. J Biophys Biochem Cytol. 1961 Feb;9:409–414. doi: 10.1083/jcb.9.2.409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. MOSINGER B., PLACER Z., KOLDOVSKY O. Passage of insulin through the wall of the gastro-intestinal tract of the infant rat. Nature. 1959 Oct 17;184(Suppl 16):1245–1246. doi: 10.1038/1841245a0. [DOI] [PubMed] [Google Scholar]
  19. Nakane P. K., Kawaoi A. Peroxidase-labeled antibody. A new method of conjugation. J Histochem Cytochem. 1974 Dec;22(12):1084–1091. doi: 10.1177/22.12.1084. [DOI] [PubMed] [Google Scholar]
  20. Palade G. Intracellular aspects of the process of protein synthesis. Science. 1975 Aug 1;189(4200):347–358. doi: 10.1126/science.1096303. [DOI] [PubMed] [Google Scholar]
  21. Pelletier G. Secretion and uptake of peroxidase by rat adenohypophyseal cells. J Ultrastruct Res. 1973 Jun;43(5):445–459. doi: 10.1016/s0022-5320(73)90021-x. [DOI] [PubMed] [Google Scholar]
  22. REYNOLDS E. S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol. 1963 Apr;17:208–212. doi: 10.1083/jcb.17.1.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Rodewald R. Intestinal transport of antibodies in the newborn rat. J Cell Biol. 1973 Jul;58(1):189–211. doi: 10.1083/jcb.58.1.189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Rodewald R. Selective antibody transport in the proximal small intestine of the neonatal rat. J Cell Biol. 1970 Jun;45(3):635–640. doi: 10.1083/jcb.45.3.635. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Rodewald R. pH-dependent binding of immunoglobulins to intestinal cells of the neonatal rat. J Cell Biol. 1976 Nov;71(2):666–669. doi: 10.1083/jcb.71.2.666. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Singer S. J., Nicolson G. L. The fluid mosaic model of the structure of cell membranes. Science. 1972 Feb 18;175(4023):720–731. doi: 10.1126/science.175.4023.720. [DOI] [PubMed] [Google Scholar]
  27. Tu A. T., Reinosa J. A., Hsiao Y. Y. Peroxidative activity of hemepeptides from horse heart cytochrome c. Experientia. 1968 Mar 15;24(3):219–221. doi: 10.1007/BF02152778. [DOI] [PubMed] [Google Scholar]
  28. Waldmann T. A., Jones E. A. The role of cell-surface receptors in the transport and catabolism of immunoglobulins. Ciba Found Symp. 1972;9:5–23. doi: 10.1002/9780470719923.ch2. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES