Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1980 May 1;85(2):199–212. doi: 10.1083/jcb.85.2.199

Distribution of chitin in the yeast cell wall. An ultrastructural and chemical study

PMCID: PMC2110607  PMID: 6989839

Abstract

The distribution of chitin in Saccharomyces cervisiae primary septa and cell walls was studied with three methods: electron microscopy of colloidal gold particles coated either with wheat germ agglutinin or with one of two different chitinases, fluorescence microscopy with fluorescein isothiocyanate derivatives of the same markers, and enzymatic treatments of [14C]glucosamine-labeled cells. The septa were uniformly and heavily labeled with the gold-attached markers, an indication that chitin was evenly distributed throughout. To study the localization of chitin in lateral walls, alkali-extracted cell ghosts were used. Observations by electron and fluorescence microscopy suggest that lectin-binding material is uniformly distributed over the whole cell ghost wall. This material also appears to be chitin, on the basis of the analysis of the products obtained after treatment of 14C-labeled cell ghosts with lytic enzymes. The chitin of lateral walls can be specifically removed by treatment with beta-(1 leads to 6)-glucanase containing a slight amount of chitinase. During this incubation approximately 7% of the total radioactivity is solubilized, about the same amount liberated when lateral walls of cell ghosts are completely digested with snail glucanase yield primary septa. It is concluded that the remaining chitin, i.e., greater than 90% of the total, is in the septa. The facilitation of chitin removal from the cell wall by beta-(1 leads to 6)-glucanase indicates a strong association between chitin and beta-(1 leads to 6)-glucan. Covalent linkages between the two polysaccharides were not detected but cannot be excluded.

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bacon J. S., Davidson E. D., Jones D., Taylor I. F. The location of chitin in the yeast cell wall. Biochem J. 1966 Nov;101(2):36C–38C. doi: 10.1042/bj1010036c. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bauer H., Horisberger M., Bush D. A., Sigarlakie E. Mannan as a major component of the bud scars of Saccharomyces cerevisiae. Arch Mikrobiol. 1972;85(3):202–208. doi: 10.1007/BF00408845. [DOI] [PubMed] [Google Scholar]
  3. Bowers B., Levin G., Cabib E. Effect of polyoxin D on chitin synthesis and septum formation in Saccharomyces cerevisiae. J Bacteriol. 1974 Aug;119(2):564–575. doi: 10.1128/jb.119.2.564-575.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cabib E., Bowers B. Chitin and yeast budding. Localization of chitin in yeast bud scars. J Biol Chem. 1971 Jan 10;246(1):152–159. [PubMed] [Google Scholar]
  5. Cabib E., Bowers B. Timing and function of chitin synthesis in yeast. J Bacteriol. 1975 Dec;124(3):1586–1593. doi: 10.1128/jb.124.3.1586-1593.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cabib E., Farkas V. The control of morphogenesis: an enzymatic mechanism for the initiation of septum formation in yeast. Proc Natl Acad Sci U S A. 1971 Sep;68(9):2052–2056. doi: 10.1073/pnas.68.9.2052. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cabib E., Ulane R., Bowers B. A molecular model for morphogenesis: the primary septum of yeast. Curr Top Cell Regul. 1974;8(0):1–32. doi: 10.1016/b978-0-12-152808-9.50008-0. [DOI] [PubMed] [Google Scholar]
  8. Duran A., Cabib E., Bowers B. Chitin synthetase distribution on the yeast plasma membrane. Science. 1979 Jan 26;203(4378):363–365. doi: 10.1126/science.366747. [DOI] [PubMed] [Google Scholar]
  9. Duran A., Cabib E. Solubilization and partial purification of yeast chitin synthetase. Confirmation of the zymogenic nature of the enzyme. J Biol Chem. 1978 Jun 25;253(12):4419–4425. [PubMed] [Google Scholar]
  10. Durán A., Bowers B., Cabib E. Chitin synthetase zymogen is attached to the yeast plasma membrane. Proc Natl Acad Sci U S A. 1975 Oct;72(10):3952–3955. doi: 10.1073/pnas.72.10.3952. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Fleet G. H., Phaff H. J. Lysis of yeast cell walls: glucanases from Bacillus circulans WL-12. J Bacteriol. 1974 Jul;119(1):207–219. doi: 10.1128/jb.119.1.207-219.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Geoghegan W. D., Ackerman G. A. Adsorption of horseradish peroxidase, ovomucoid and anti-immunoglobulin to colloidal gold for the indirect detection of concanavalin A, wheat germ agglutinin and goat anti-human immunoglobulin G on cell surfaces at the electron microscopic level: a new method, theory and application. J Histochem Cytochem. 1977 Nov;25(11):1187–1200. doi: 10.1177/25.11.21217. [DOI] [PubMed] [Google Scholar]
  13. Horisberger M., Rosset J. Localization of wheat germ agglutinin receptor sites on yeast cells by scanning electron microscopy. Experientia. 1976 Aug 15;32(8):998–1000. doi: 10.1007/BF01933934. [DOI] [PubMed] [Google Scholar]
  14. Horisberger M., Vonlanthen M. Location of mannan and chitin on thin sections of budding yeasts with gold markers. Arch Microbiol. 1977 Oct 24;115(1):1–7. doi: 10.1007/BF00427837. [DOI] [PubMed] [Google Scholar]
  15. Manners D. J., Masson A. J., Patterson J. C., Björndal H., Lindberg B. The structure of a beta-(1--6)-D-glucan from yeast cell walls. Biochem J. 1973 Sep;135(1):31–36. doi: 10.1042/bj1350031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Molano J., Durán A., Cabib E. A rapid and sensitive assay for chitinase using tritiated chitin. Anal Biochem. 1977 Dec;83(2):648–656. doi: 10.1016/0003-2697(77)90069-0. [DOI] [PubMed] [Google Scholar]
  17. Molano J., Polacheck I., Duran A., Cabib E. An endochitinase from wheat germ. Activity on nascent and preformed chitin. J Biol Chem. 1979 Jun 10;254(11):4901–4907. [PubMed] [Google Scholar]
  18. RINDERKNECHT H. A new technique for the fluorescent labelling of proteins. Experientia. 1960 Sep 15;16:430–431. doi: 10.1007/BF02178856. [DOI] [PubMed] [Google Scholar]
  19. Seichertová O., Beran K., Holan Z., Pokorný V. The chitin-glucan complex of Saccharomyces cerevisiae. II. Location of the complex in the encircling region of the bud sear. Folia Microbiol (Praha) 1973;18(3):207–211. doi: 10.1007/BF02872858. [DOI] [PubMed] [Google Scholar]
  20. TREVELYAN W. E., HARRISON J. S. Studies on yeast metabolism. I. Fractionation and microdetermination of cell carbohydrates. Biochem J. 1952 Jan;50(3):298–303. doi: 10.1042/bj0500298. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES