Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1980 May 1;85(2):242–247. doi: 10.1083/jcb.85.2.242

On the possible role of serotonin in the regulation of regeneration of cilia

PMCID: PMC2110612  PMID: 6246119

Abstract

A study was made of the interrelationship of serotonin, cAMP, and calcium ions in the regulation of regeneration of cilia by Tetrahymena pyriformis. All these compounds stimulated the regeneration, whereas a blocker of serotonin synthesis, p-chlorophenylalanine, and a calcium chelator, EGTA, inhibited the process. This inhibition could be overcome by the addition of any of the stimulatory compounds. cAMP was also found to be inhibitory at high concentrations. The intracellular concentration of this nucleotide was found to increase during the regeneration, and this increase occurred precociously in the presence of serotonin. It was concluded that serotonin may regulate ciliary regeneration by a mechanism involving cAMP And calcium ions, but that the causal relationships among these compounds still need to be established.

Full Text

The Full Text of this article is available as a PDF (454.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agarwal K. C., Steiner M. Effect of serotonin on cyclic nucleotides of human platelets. Biochem Biophys Res Commun. 1976 Apr 19;69(4):962–969. doi: 10.1016/0006-291x(76)90467-8. [DOI] [PubMed] [Google Scholar]
  2. BUZNIKOV G. A., CHUDAKOVA I. V., ZVEZDINA N. D. THE R OLE OF NEUROHUMOURS IN EARLY EMBRYOGENESIS. I. SEROTONIN CONTENT OF DEVELOPING EMBRYOS OF SEA URCHIN AND LOACH. J Embryol Exp Morphol. 1964 Dec;12:563–573. [PubMed] [Google Scholar]
  3. Brizzi G., Blum J. J. Effect of growth conditions on serotonin content of Tetrahymena pyriformis. J Protozool. 1970 Nov;17(4):553–555. doi: 10.1111/j.1550-7408.1970.tb04727.x. [DOI] [PubMed] [Google Scholar]
  4. Buznikov G. A., Kost A. N., Kucherova N. F., Mndzhoyan A. L., Suvorov N. N., Berdysheva L. V. The role of neurohumours in early embryogenesis. 3. Pharmacological analysis of the role of neurohumours in cleavage divisions. J Embryol Exp Morphol. 1970 Jun;23(3):549–569. [PubMed] [Google Scholar]
  5. Buznikov G. A., Sakharova A. V., Manukhin B. N., Markova L. N. The role of neurohumours in early embryogenesis. IV. Fluorometric and histochemical study of serotonin in cleaving eggs and larvae of sea urchins. J Embryol Exp Morphol. 1972 Apr;27(2):339–351. [PubMed] [Google Scholar]
  6. Csaba G., Nagy S. U., Lantos T. Are biogenic amines acting on tetrahymena through a cyclic amp mechanism? Acta Biol Med Ger. 1976;35(2):259–261. [PubMed] [Google Scholar]
  7. Gentleman S., Mansour T. E. Control of Ca2+ efflux and cyclic AMP by 5-hydroxytryptamine and dopamine in abalone gill. Life Sci. 1977 Feb 15;20(4):687–694. doi: 10.1016/0024-3205(77)90474-x. [DOI] [PubMed] [Google Scholar]
  8. Gillespie E. Colchicine binding in tissue slices. Decrease by calcium and biphasic effect of adenosine-3', 5'-monophosphate. J Cell Biol. 1971 Aug;50(2):544–549. doi: 10.1083/jcb.50.2.544. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gillespie E. Microtubules, cyclic AMP, calcium, and secretion. Ann N Y Acad Sci. 1975 Jun 30;253:771–779. doi: 10.1111/j.1749-6632.1975.tb19245.x. [DOI] [PubMed] [Google Scholar]
  10. Gilman A. G., Murad F. Assay of cyclic nucleotides by receptor protein binding displacement. Methods Enzymol. 1974;38:49–61. doi: 10.1016/0076-6879(74)38010-x. [DOI] [PubMed] [Google Scholar]
  11. Gustafson T., Toneby M. On the role of serotonin and acetylcholine in sea urchin morphogenesis. Exp Cell Res. 1970 Sep;62(1):102–117. doi: 10.1016/0014-4827(79)90512-3. [DOI] [PubMed] [Google Scholar]
  12. Guttman S. D., Gorovsky M. A. Cilia regeneration in starved tetrahymena: an inducible system for studying gene expression and organelle biogenesis. Cell. 1979 Jun;17(2):307–317. doi: 10.1016/0092-8674(79)90156-9. [DOI] [PubMed] [Google Scholar]
  13. Janakidevi K., Dewey V. C., Kidder G. W. Serotonin in protozoa. Arch Biochem Biophys. 1966 Mar;113(3):758–759. doi: 10.1016/0003-9861(66)90259-1. [DOI] [PubMed] [Google Scholar]
  14. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  15. Massini P., Lüscher E. F. Some effects of ionophores for divalent cations on blood platelets. Comparison with the effects of thrombin. Biochim Biophys Acta. 1974 Nov 4;372(1):109–121. doi: 10.1016/0304-4165(74)90077-4. [DOI] [PubMed] [Google Scholar]
  16. Milhaud M., Pappas G. D. Cilia formation in the adult cat brain after pargyline treatment. J Cell Biol. 1968 Jun;37(3):599–609. doi: 10.1083/jcb.37.3.599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Olmsted J. B., Borisy G. G. Characterization of microtubule assembly in porcine brain extracts by viscometry. Biochemistry. 1973 Oct 9;12(21):4282–4289. doi: 10.1021/bi00745a037. [DOI] [PubMed] [Google Scholar]
  18. Perchellet J. P., Sharma R. K. Mediatory role of calcium and guanosine 3', 5'-monophosphate in adrenocorticotropin-induced steroidogenesis by adrenal cells. Science. 1979 Mar 23;203(4386):1259–1261. doi: 10.1126/science.34216. [DOI] [PubMed] [Google Scholar]
  19. Pletscher A., Da Prada M. The organelles storing 5-hydroxytryptamine in blood platelets. Ciba Found Symp. 1975;35:261–286. doi: 10.1002/9780470720172.ch13. [DOI] [PubMed] [Google Scholar]
  20. Prince W. T., Berridge M. J., Rasmussen H. Role of calcium and adenosine-3':5'-cyclic monophosphate in controlling fly salivary gland secretion. Proc Natl Acad Sci U S A. 1972 Mar;69(3):553–557. doi: 10.1073/pnas.69.3.553. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Prince W. T., Rasmussen H., Berridge M. J. The role of calcium in fly salivary gland secretion analyzed with the ionophore A-23187. Biochim Biophys Acta. 1973 Nov 2;329(1):98–107. doi: 10.1016/0304-4165(73)90012-3. [DOI] [PubMed] [Google Scholar]
  22. Quader H., Cherniack J., Filner P. Participation of calcium in flagellar shortening and regeneration in Chlamydomonas reinhardii. Exp Cell Res. 1978 May;113(2):295–301. doi: 10.1016/0014-4827(78)90369-5. [DOI] [PubMed] [Google Scholar]
  23. Rannestad J. The regeneration of cilia in partially deciliated Tetrahymena. J Cell Biol. 1974 Dec;63(3):1009–1017. doi: 10.1083/jcb.63.3.1009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Rasmussen H., Goodman D. B. Relationships between calcium and cyclic nucleotides in cell activation. Physiol Rev. 1977 Jul;57(3):421–509. doi: 10.1152/physrev.1977.57.3.421. [DOI] [PubMed] [Google Scholar]
  25. Rosenbaum J. L., Carlson K. Cilia regeneration in Tetrahymena and its inhibition by colchicine. J Cell Biol. 1969 Feb;40(2):415–425. doi: 10.1083/jcb.40.2.415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Rosenbaum J. L., Moulder J. E., Ringo D. L. Flagellar elongation and shortening in Chlamydomonas. The use of cycloheximide and colchicine to study the synthesis and assembly of flagellar proteins. J Cell Biol. 1969 May;41(2):600–619. doi: 10.1083/jcb.41.2.600. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Rozensweig Z., Kindler S. H. Epinephrine and serotonin activation of adenyl cyclase from Tetrahymena pyriformis. FEBS Lett. 1972 Sep 15;25(2):221–223. doi: 10.1016/0014-5793(72)80489-7. [DOI] [PubMed] [Google Scholar]
  28. Rubin R. W., Filner P. Adenosine 3',5'-cyclic monophosphate in Chlamydomonas reinhardtii. Influence on flagellar function and regeneration. J Cell Biol. 1973 Mar;56(3):628–635. doi: 10.1083/jcb.56.3.628. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Wolfe J. Cell division, ciliary regeneration and cyclic AMP in a unicellular system. J Cell Physiol. 1973 Aug;82(1):39–48. doi: 10.1002/jcp.1040820105. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES