Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1980 May 1;85(2):313–324. doi: 10.1083/jcb.85.2.313

[3H]ouabain autoradiography of frog retina

PMCID: PMC2110625  PMID: 6246120

Abstract

The kinetics and distribution of ouabain binding in retinas of Rana pipiens were examined quantitatively by scintillation counting and freeze-dry autoradiography. The time-course of binding at several concentrations was consistent with a bimolecular reaction. Estimated equilibrium binding levels gave a Michaelis-Menton relationship with a Km = 8.3 x 10(-8) M and a maximum binding level (Bmax) = 4.4 x 10(-8) mol/g protein. The distribution of binding sites measured autoradiographically varied considerably between layers. The photoreceptor, inner plexiform, and optic nerve fiber layers exhibited the heaviest binding. Within the photoreceptor layer, binding was nonuniform. Binding in the outer segment decreased distally, averaging approximately 4% of that in the proximal receptor layers (Bmax = 4.6 x 10(-6) M). The origin of the outer segment activity is uncertain at light microscope resolution, as it may be a result of inner segment calyceal processes. Binding within the proximal receptor layers was also nonuniform. Several peaks were observed, with those at the inner segment and synaptic layers being especially noticeable. Assuming an absence of glial cell binding in the proximal receptor layers, we calculated there to be 13 x 10(6) ouabain or Na+,K+ pump sites per rod receptor. Limited measurements suggest a Bmax of approximately 8 x 10(- 6) M for the inner plexiform layer.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ames A., 3rd, Nesbett F. B. Intracellular and extracellular compartments of mammalian central nervous tissue. J Physiol. 1966 May;184(1):215–238. doi: 10.1113/jphysiol.1966.sp007912. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BONTING S. L., CARAVAGGIO L. L., CANADY M. R. STUDIES ON SODIUM-POTASSIUM-ACTIVATED ADENOSINE TRIPHOSPHATASE. X. OCCURRENCE IN RETINAL RODS AND RELATION TO RHODOPSIN. Exp Eye Res. 1964 Mar;3:47–56. doi: 10.1016/s0014-4835(64)80007-5. [DOI] [PubMed] [Google Scholar]
  3. Baker P. F., Willis J. S. Binding of the cardiac glycoside ouabain to intact cells. J Physiol. 1972 Jul;224(2):441–462. doi: 10.1113/jphysiol.1972.sp009904. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Baylor D. A., Fuortes M. G. Electrical responses of single cones in the retina of the turtle. J Physiol. 1970 Mar;207(1):77–92. doi: 10.1113/jphysiol.1970.sp009049. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Berman A. L., Azimova A. M., Gribakin F. G. Localization of Na+, K+-ATPase and Ca2+-activated Mg2+-dependent ATPase in retinal rods. Vision Res. 1977;17(4):527–536. doi: 10.1016/0042-6989(77)90051-7. [DOI] [PubMed] [Google Scholar]
  6. Bortoff A., Norton A. L. An electrical model of the vertebrate photoreceptor cell. Vision Res. 1967 Mar;7(3):253–263. doi: 10.1016/0042-6989(67)90089-2. [DOI] [PubMed] [Google Scholar]
  7. Bownds D., Brodie A., Robinson W. E., Palmer R. D., Miller J., Shedlovsky A. Proceedings: Physiology and enzymology of frog photoreceptor membranes. Exp Eye Res. 1974 Mar;18(3):253–269. doi: 10.1016/0014-4835(74)90153-5. [DOI] [PubMed] [Google Scholar]
  8. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  9. FUORTES M. G., HODGKIN A. L. CHANGES IN TIME SCALE AND SENSITIVITY IN THE OMMATIDIA OF LIMULUS. J Physiol. 1964 Aug;172:239–263. doi: 10.1113/jphysiol.1964.sp007415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Frank R. N., Goldsmith T. H. Adenosine triphosphatase activity in the rod outer segments of the pig retina. Arch Biochem Biophys. 1965 Jun;110(3):517–525. doi: 10.1016/0003-9861(65)90445-5. [DOI] [PubMed] [Google Scholar]
  11. Frank R. N., Goldsmith T. H. Effects of cardiac glycosides on electrical activity in the isolated retina of the frog. J Gen Physiol. 1967 Jul;50(6):1585–1606. doi: 10.1085/jgp.50.6.1585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hagins W. A., Penn R. D., Yoshikami S. Dark current and photocurrent in retinal rods. Biophys J. 1970 May;10(5):380–412. doi: 10.1016/S0006-3495(70)86308-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hagins W. A., Robinson W. E., Yoshikami S. Ionic aspects of excitation in rod outer segments. Ciba Found Symp. 1975;(31):169–189. doi: 10.1002/9780470720134.ch10. [DOI] [PubMed] [Google Scholar]
  14. Hagins W. A. The visual process: Excitatory mechanisms in the primary receptor cells. Annu Rev Biophys Bioeng. 1972;1:131–158. doi: 10.1146/annurev.bb.01.060172.001023. [DOI] [PubMed] [Google Scholar]
  15. Hemminki K. Localization of ATPase in bovine retinal outer segments. Exp Eye Res. 1975 Jan;20(1):79–88. doi: 10.1016/0014-4835(75)90110-4. [DOI] [PubMed] [Google Scholar]
  16. Karnaky K. J., Jr, Kinter L. B., Kinter W. B., Stirling C. E. Teleost chloride cell. II. Autoradiographic localization of gill Na,K-ATPase in killifish Fundulus heteroclitus adapted to low and high salinity environments. J Cell Biol. 1976 Jul;70(1):157–177. doi: 10.1083/jcb.70.1.157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Korenbrot J. I., Cone R. A. Dark ionic flux and the effects of light in isolated rod outer segments. J Gen Physiol. 1972 Jul;60(1):20–45. doi: 10.1085/jgp.60.1.20. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Liebman P. A., Entine G. Lateral diffusion of visual pigment in photorecptor disk membranes. Science. 1974 Aug 2;185(4149):457–459. doi: 10.1126/science.185.4149.457. [DOI] [PubMed] [Google Scholar]
  19. Miller S. S., Steinberg R. H., Oakley B., 2nd The electrogenic sodium pump of the frog retinal pigment epithelium. J Membr Biol. 1978 Dec 29;44(3-4):259–279. doi: 10.1007/BF01944224. [DOI] [PubMed] [Google Scholar]
  20. Mills J. W., Ernst S. A., DiBona D. R. Localization of Na+-pump sites in frog skin. J Cell Biol. 1977 Apr;73(1):88–110. doi: 10.1083/jcb.73.1.88. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. NILSSON S. E. AN ELECTRON MICROSCOPIC CLASSIFICATION OF THE RETINAL RECEPTORS OF THE LEOPARD FROG (RANA PIPIENS). J Ultrastruct Res. 1964 Jun;10:390–416. doi: 10.1016/s0022-5320(64)80018-6. [DOI] [PubMed] [Google Scholar]
  22. POST R. L., JOLLY P. C. The linkage of sodium, potassium, and ammonium active transport across the human erythrocyte membrane. Biochim Biophys Acta. 1957 Jul;25(1):118–128. doi: 10.1016/0006-3002(57)90426-2. [DOI] [PubMed] [Google Scholar]
  23. Poo M., Cone R. A. Lateral diffusion of rhodopsin in the photoreceptor membrane. Nature. 1974 Feb 15;247(5441):438–441. doi: 10.1038/247438a0. [DOI] [PubMed] [Google Scholar]
  24. Quinton P. M., Wright E. M., Tormey J. M. Localization of sodium pumps in the choroid plexus epithelium. J Cell Biol. 1973 Sep;58(3):724–730. doi: 10.1083/jcb.58.3.724. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. RICHARDSON K. C., JARETT L., FINKE E. H. Embedding in epoxy resins for ultrathin sectioning in electron microscopy. Stain Technol. 1960 Nov;35:313–323. doi: 10.3109/10520296009114754. [DOI] [PubMed] [Google Scholar]
  26. Schwartz A., Lindenmayer G. E., Allen J. C. The sodium-potassium adenosine triphosphatase: pharmacological, physiological and biochemical aspects. Pharmacol Rev. 1975 Mar;27(01):3–134. [PubMed] [Google Scholar]
  27. Shaver J. L., Stirling C. Ouabain binding to renal tubules of the rabbit. J Cell Biol. 1978 Feb;76(2):278–292. doi: 10.1083/jcb.76.2.278. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Stahl L. W., Broderson S. H. Localization of Na+, K+-ATPase in brain. Fed Proc. 1976 May 1;35(6):1260–1265. [PubMed] [Google Scholar]
  29. Stirling C. E. High-resolution autoradiography of 3H-ouabain binding in salt transporting epithelia. J Microsc. 1976 Mar;106(2):145–157. doi: 10.1111/j.1365-2818.1976.tb02397.x. [DOI] [PubMed] [Google Scholar]
  30. Stirling C. E., Kinter W. B. High-resolution radioautography of galactose-3H accumulation in rings of hamster intestine. J Cell Biol. 1967 Dec;35(3):585–604. doi: 10.1083/jcb.35.3.585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Stirling C. E. Radioautographic localization of sodium pump sites in rabbit intestine. J Cell Biol. 1972 Jun;53(3):704–714. doi: 10.1083/jcb.53.3.704. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Toyoda J., Nosaki H., Tomita T. Light-induced resistance changes in single photoreceptors of Necturus and Gekko. Vision Res. 1969 Apr;9(4):453–463. doi: 10.1016/0042-6989(69)90134-5. [DOI] [PubMed] [Google Scholar]
  33. Young R. W. The renewal of photoreceptor cell outer segments. J Cell Biol. 1967 Apr;33(1):61–72. doi: 10.1083/jcb.33.1.61. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES