Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1980 May 1;85(2):386–391. doi: 10.1083/jcb.85.2.386

Regulation of microtubule assembly in cultured fibroblasts

PMCID: PMC2110629  PMID: 7372712

Abstract

Microtubule assembly in diploid human skin fibroblasts was studied by [3H]colchicine binding to disaggregated microtubule subunits and to total cell tubulin. Microtubule content per milligram of cell protein was critically dependent upon cell density. As cultures neared confluence, microtubules increased and total cell tubulin decreased; the percent of tubulin assembled into microtubules increased from 5.3 in spare cultures to 58.3 in confluent cultures. Microtubules disappeared with a half-time of 2 min in response to 0 degree C incubation and reformed upon rewarming. Brief treatment of intact cells with concanavalin A or cytochalasin A depolymerized microtubules to 55 or 56% of control levels. The effect of concanavalin A was prevented by alpha-methylmannoside. Fibroblast microtubule assembly was not significantly altered by cyclic nucleotides, ascorbate, glucose, insulin, medium calcium concentration, or calcium ionophore A23187.

Full Text

The Full Text of this article is available as a PDF (456.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Borman L. S., Dumont J. N., Hsie A. W. Relationship between cyclic AMP microtubule organization, and mammalian cell shape. Studies on Chinese hamster ovary cells and their variants. Exp Cell Res. 1975 Mar 15;91(2):422–428. doi: 10.1016/0014-4827(75)90123-8. [DOI] [PubMed] [Google Scholar]
  2. Brinkley B. R., Fuller E. M., Highfield D. P. Cytoplasmic microtubules in normal and transformed cells in culture: analysis by tubulin antibody immunofluorescence. Proc Natl Acad Sci U S A. 1975 Dec;72(12):4981–4985. doi: 10.1073/pnas.72.12.4981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brown M. S., Dana S. E., Goldstein J. L. Regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity in cultured human fibroblasts. Comparison of cells from a normal subject and from a patient with homozygous familial hypercholesterolemia. J Biol Chem. 1974 Feb 10;249(3):789–796. [PubMed] [Google Scholar]
  4. Ehrlich H. P., Ross R., Bornstein P. Effects of antimicrotubular agents on the secretion of collagen. A biochemical and morphological study. J Cell Biol. 1974 Aug;62(2):390–405. doi: 10.1083/jcb.62.2.390. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Gillespie E. Microtubules, cyclic AMP, calcium, and secretion. Ann N Y Acad Sci. 1975 Jun 30;253:771–779. doi: 10.1111/j.1749-6632.1975.tb19245.x. [DOI] [PubMed] [Google Scholar]
  6. Haslam R. J., Goldstein S. Adenosine 3': 5'-cyclic monophosphate in young and senescent human fibroblasts during growth and stationary phase in vitro. Effects of prostaglandine E1 and of adrenaline. Biochem J. 1974 Nov;144(2):253–263. doi: 10.1042/bj1440253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Himes R. H., Kersey R. N., Ruscha M., Houston L. L. Cytochalasin A inhibits the in vitro polymerization of brain tubulin and muscle actin. Biochem Biophys Res Commun. 1976 Feb 23;68(4):1362–1370. doi: 10.1016/0006-291x(76)90346-6. [DOI] [PubMed] [Google Scholar]
  8. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  9. Oliver J. M. Impaired microtubule function correctable by cyclic GMP and cholinergic agonists in the Chediak-Higashi syndrome. Am J Pathol. 1976 Nov;85(2):395–418. [PMC free article] [PubMed] [Google Scholar]
  10. Olmsted J. B., Borisy G. G. Microtubules. Annu Rev Biochem. 1973;42:507–540. doi: 10.1146/annurev.bi.42.070173.002451. [DOI] [PubMed] [Google Scholar]
  11. Ostlund R. E., Jr, Leung J. T., Hajek S. V. Biochemical determination of tubulin-microtubule equilibrium in cultured cells. Anal Biochem. 1979 Jul 1;96(1):155–164. doi: 10.1016/0003-2697(79)90568-2. [DOI] [PubMed] [Google Scholar]
  12. Ostlund R. E., Jr, Pfleger B., Schonfeld G. Role of microtubules in low density lipoprotein processing by cultured cells. J Clin Invest. 1979 Jan;63(1):75–84. doi: 10.1172/JCI109281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. PUCK T. T., CIECIURA S. J., ROBINSON A. Genetics of somatic mammalian cells. III. Long-term cultivation of euploid cells from human and animal subjects. J Exp Med. 1958 Dec 1;108(6):945–956. doi: 10.1084/jem.108.6.945. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Pastan I. Cyclic AMP and the malignant transformation of cells. Adv Metab Disord. 1975;8:377–383. doi: 10.1016/b978-0-12-027308-9.50029-9. [DOI] [PubMed] [Google Scholar]
  15. Pipeleers D. G., Pipeleers-Marichal M. A., Kipnis D. M. Physiological regulation of total tubulin and polymerized tubulin in tissues. J Cell Biol. 1977 Aug;74(2):351–357. doi: 10.1083/jcb.74.2.351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Pipeleers D. G., Pipeleers-Marichal M. A., Sherline P., Kipnis D. M. A sensitive method for measuring polymerized and depolymerized forms of tubulin in tissues. J Cell Biol. 1977 Aug;74(2):341–350. doi: 10.1083/jcb.74.2.341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Pouysségur J. M., Pastan I. Mutants of Balb/c 3T3 fibroblasts defective in adhesiveness to substratum: evidence for alteration in cell surface proteins. Proc Natl Acad Sci U S A. 1976 Feb;73(2):544–548. doi: 10.1073/pnas.73.2.544. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. ROBBINS E., GONATAS N. K. HISTOCHEMICAL AND ULTRASTRUCTURAL STUDIES ON HELA CELL CULTURES EXPOSED TO SPINDLE INHIBITORS WITH SPECIAL REFERENCE TO THE INTERPHASE CELL. J Histochem Cytochem. 1964 Sep;12:704–711. doi: 10.1177/12.9.704. [DOI] [PubMed] [Google Scholar]
  19. Rubin R. W., Weiss G. D. Direct biochemical measurements of microtubule assembly and disassembly in Chinese hamster ovary cells. The effect of intercellular contact, cold, D2O, and N6,O2'-dibutyryl cyclic adenosine monophosphate. J Cell Biol. 1975 Jan;64(1):42–53. doi: 10.1083/jcb.64.1.42. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Sherline P., Mundy G. R. Role of the tubulin-microtubule system in lymphocyte activation. J Cell Biol. 1977 Aug;74(2):371–376. doi: 10.1083/jcb.74.2.371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Steiner M. 3',5'-cyclic AMP binds to and promotes polymerisation on platelet tubulin. Nature. 1978 Apr 27;272(5656):834–835. doi: 10.1038/272834a0. [DOI] [PubMed] [Google Scholar]
  22. Switzer B. R., Summer G. K. A modified fluorometric micromethod for DNA. Clin Chim Acta. 1971 Apr;32(2):203–206. doi: 10.1016/0009-8981(71)90333-0. [DOI] [PubMed] [Google Scholar]
  23. Weissmann G., Goldstein I., Hoffstein S., Tsung P. K. Reciprocal effects of cAMP and cGMP on microtubule-dependent release of lysosomal enzymes. Ann N Y Acad Sci. 1975 Jun 30;253:750–762. doi: 10.1111/j.1749-6632.1975.tb19243.x. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES