Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1980 Jul 1;86(1):260–272. doi: 10.1083/jcb.86.1.260

Molecular organization of prolactin granules. II. Characterization of glycosaminoglycans and glycoproteins of the bovine prolactin matrix

PMCID: PMC2110646  PMID: 7419576

Abstract

Prolactin (PRL) granules can be isolated from the anterior pituitary gland of adult cows in nearly 50% yield by use of a procedure previously developed for the fractionation of the rat pituitary. Treatment of the isolated bovine granules with 0.2% Lubrol PX results in the solubilization of most membranes present in the fractin but has only a limited effect on the matrices, which remain aggregated and can be recovered and purified by gradient centrifugation. These membraneless PRL granules, studied in detail by morphological and biochemical techniques, were found to contain only small amounts of contaminants (primarily growth hormone granules and small membrane fragments). SDS polyacrylamide gel electrophoresis revealed that, in comparison with other fractions isolated from the bovine pituitary, the membraneless granules have a simpler polypeptide composition including PRL (approximately 85%), growth hormone (approximately 8%), as well as approximately 13 minor bands with apparent mol wt ranging from 80,000 go 45,000. Many of these minor bands are accounted for by glycoproteins, as revealed by their binding of 125I-concanavalin A, and two of these are also stained blue by the stains-all procedure, a reaction specific for acidic glycoconjugates. Chemical analyses of the membraneless granule fractin revealed the presence of a heterogeneous mixture of complex carbohydrates. Among glycosaminoglycans, the major component is heparan sulfate, while hyaluronic acid and chondroitin sulfate ar present in smaller amounts. Moreover, some of the glycoproteins are sulfated and account for over 50% of the nondialyzable 35S radioactivity found in the fraction isolated from labeled slices. Although the concentration of glycosaminoglycans and glycoproteins is relatively low in membraneless granules, the possibility that their presence in the fraction is largely due to cross- contamination and/or artifactual adsorption could be excluded on two grounds. These are: (a) electron microscope radiautography of preparations obtained from [35S]sulfate- and D-[6-3H]glucosamine- labeled slices showed a significant labeling of PRL granules in both intact cells and membraneless granule pellets, and (b) a mixing experiment showed that membraneless granules contain very little macromolecular sulfate radiactivity adsorbed from the soluble glycoconjugates present in the pituitary homogenate.

Full Text

The Full Text of this article is available as a PDF (1.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bonner W. M., Laskey R. A. A film detection method for tritium-labelled proteins and nucleic acids in polyacrylamide gels. Eur J Biochem. 1974 Jul 1;46(1):83–88. doi: 10.1111/j.1432-1033.1974.tb03599.x. [DOI] [PubMed] [Google Scholar]
  2. CARO L. G. High-resolution autoradiogaphy. II. The problem of resolution. J Cell Biol. 1962 Nov;15:189–199. doi: 10.1083/jcb.15.2.189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Dacheux F., Dubois M. P. Ultrastructural localization of prolactin, growth hormone and luteinizing hormone by immunocytochemical techniques in the bovine pituitary. Cell Tissue Res. 1976 Oct 29;174(2):245–260. doi: 10.1007/BF00222162. [DOI] [PubMed] [Google Scholar]
  4. FOLCH J., LEES M., SLOANE STANLEY G. H. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957 May;226(1):497–509. [PubMed] [Google Scholar]
  5. Geissler D., Martinek A., Margolis R. U., Margolis R. K., Skrivanek J. A., Ledeen R., König P., Winkler H. Composition and biogenesis of complex carbohydrates of ox adrenal chromaffin granules. Neuroscience. 1977;2(5):685–693. doi: 10.1016/0306-4522(77)90023-9. [DOI] [PubMed] [Google Scholar]
  6. Giannattasio G., Zanini A., Meldolesi J. Molecular organization of rat prolactin granules. I. In vitro stability of intact and "membraneless" granules. J Cell Biol. 1975 Jan;64(1):246–251. doi: 10.1083/jcb.64.1.246. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Giannattasio G., Zanini A. Presence of sulfated proteoglycans in prolactin secretory granules isolated from the rat pituitary gland. Biochim Biophys Acta. 1976 Aug 9;439(2):349–357. doi: 10.1016/0005-2795(76)90070-2. [DOI] [PubMed] [Google Scholar]
  8. Giannattasio G., Zanini A., Rosa P., Meldolesi J., Margolis R. K., margolis R. U. Molecular organization of prolactin granules. III. Intracellular transport of sulfated glycosaminoglycans and glycoproteins of the bovine prolactin granule matrix. J Cell Biol. 1980 Jul;86(1):273–279. doi: 10.1083/jcb.86.1.273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. King L. E., Jr, Morrison M. The visualization of human erythrocyte membrane proteins and glycoproteins in SDS polyacrylamide gels employing a single staining procedure. Anal Biochem. 1976 Mar;71(1):223–230. doi: 10.1016/0003-2697(76)90031-2. [DOI] [PubMed] [Google Scholar]
  10. Kronquist K. E., Elmahdy A., Ronzio R. A. Synthesis and subcellular distribution of heparan sulfate in the rat exocrine pancreas. Arch Biochem Biophys. 1977 Jul;182(1):188–196. doi: 10.1016/0003-9861(77)90298-3. [DOI] [PubMed] [Google Scholar]
  11. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  12. Lee Y. C., McKelvy J. F., Lang D. Rapid automatic analysis of sugar components of glycoproteins. II. Neutral sugars. Anal Biochem. 1969 Mar;27(3):567–574. doi: 10.1016/0003-2697(69)90071-2. [DOI] [PubMed] [Google Scholar]
  13. Margolis R. K., Margolis R. U., Preti C., Lai D. Distribution and metabolism of glycoproteins and glycosaminoglycans in subcellular fractions of brain. Biochemistry. 1975 Nov 4;14(22):4797–4804. doi: 10.1021/bi00693a004. [DOI] [PubMed] [Google Scholar]
  14. Margolis R. K., Margolis R. U. Sulfated glycopeptides from rat brain glycoproteins. Biochemistry. 1970 Oct 27;9(22):4389–4396. doi: 10.1021/bi00824a020. [DOI] [PubMed] [Google Scholar]
  15. Meldolesi J., Marini D., Marini M. L. Studies on in vitro synthesis and secretion of growth hormone and prolactin. I. Hormone pulse labeling with radioactive leucine. Endocrinology. 1972 Sep;91(3):802–808. doi: 10.1210/endo-91-3-802. [DOI] [PubMed] [Google Scholar]
  16. Palade G. Intracellular aspects of the process of protein synthesis. Science. 1975 Aug 1;189(4200):347–358. doi: 10.1126/science.1096303. [DOI] [PubMed] [Google Scholar]
  17. Reggio H. A., Palade G. E. Sulfated compounds in the zymogen granules of the guinea pig pancreas. J Cell Biol. 1978 May;77(2):288–314. doi: 10.1083/jcb.77.2.288. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Reggio H., Dagorn J. C. Ionic interactions between bovine chymotrypsinogen A and chondroitin sulfate A.B.C.. A possible model for molecular aggregation in zymogen granules. J Cell Biol. 1978 Sep;78(3):951–957. doi: 10.1083/jcb.78.3.951. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Rostas J. A., Kelly P. T., Cotman C. W. The identification of membrane glycocomponents in polyacrylamide gels: a rapid method using 125I-labeled lectins. Anal Biochem. 1977 Jun;80(2):366–372. doi: 10.1016/0003-2697(77)90657-1. [DOI] [PubMed] [Google Scholar]
  20. Sottocasa G. L., Kuylenstierna B., Ernster L., Bergstrand A. An electron-transport system associated with the outer membrane of liver mitochondria. A biochemical and morphological study. J Cell Biol. 1967 Feb;32(2):415–438. doi: 10.1083/jcb.32.2.415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Takesue S., Omura T. Solubilization of NADH-cytochrome b5 reductase from liver microsomes by lysosomal digestion. J Biochem. 1970 Feb;67(2):259–266. doi: 10.1093/oxfordjournals.jbchem.a129249. [DOI] [PubMed] [Google Scholar]
  22. Weibel E. R. Stereological principles for morphometry in electron microscopic cytology. Int Rev Cytol. 1969;26:235–302. doi: 10.1016/s0074-7696(08)61637-x. [DOI] [PubMed] [Google Scholar]
  23. Whur P., Herscovics A., Leblond C. P. Radioautographic visualization of the incorporation of galactose-3H and mannose-3H by rat thyroids in vitro in relation to the stages of thyroglobulin synthesis. J Cell Biol. 1969 Nov;43(2):289–311. doi: 10.1083/jcb.43.2.289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Zanetta J. P., Morgan I. G., Gombos G. Synaptosomal plasma membrane glycoproteins: fractionation by affinity chromatography on concanavalin A. Brain Res. 1975 Jan 10;83(2):337–348. doi: 10.1016/0006-8993(75)90940-3. [DOI] [PubMed] [Google Scholar]
  25. Zanini A., Giannattasio G. Isolation of prolactin granules from rat anterior pituitary glands. Endocrinology. 1973 Feb;92(2):349–357. doi: 10.1210/endo-92-2-349. [DOI] [PubMed] [Google Scholar]
  26. Zanini A., Giannattasio G., Meldolesi J. Separation of rat pituitary growth hormone and prolactin by SDS polyacrylamide gel electrophoresis. Endocrinology. 1974 Feb;94(2):594–598. doi: 10.1210/endo-94-2-594. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES