Skip to main content

Some NLM-NCBI services and products are experiencing heavy traffic, which may affect performance and availability. We apologize for the inconvenience and appreciate your patience. For assistance, please contact our Help Desk at info@ncbi.nlm.nih.gov.

The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1980 Jul 1;86(1):304–314. doi: 10.1083/jcb.86.1.304

The membrane proteins of the vacuolar system. II. Bidirectional flow between secondary lysosomes and plasma membrane

PMCID: PMC2110648  PMID: 7419580

Abstract

Lactoperoxidase covalently coupled to latex spheres (LPO-latex) has been used to selectively iodinate the phagolysome (PL) membrane within living macrophages, as discussed in the accompanying article. This procedure labeled approximately 24 polypeptides in the PL membrane; these were similar to those iodinatable on the external surface of the plasma membrane (PM). We now report on the translocation and fate of these proteins when the cells are returned to culture. TCA-precipitable radioactivity was lost from cells with biphasic kinetics. 20-50% of the cell-associated radiolabel was rapidly digested (t 1/2 approximately equal to 1 h) and recovered in the culture medium as monoiodotyrosine. 50-80% of the label was lost slowly from cells ( 1/2 approximately equal to 24-30 h). Quantitative analysis of gel autoradiograms showed that all radiolabeled proteins were lost at the same rate in both the rapid and slow phases of digestion. Within 15-30 min aftr labeling of the PL membrane, EM autoradiography revealed that the majority of the cell-associated grains, which at time 0 were associated with PL, were now randomly dispersed over the plasmalemma. At this time, analysis of PM captured by a second phagocytic load revealed the presence of all labeled species originally present in the PL membrane. This demonstrated the rapid, synchronous centrifugal flow of PL polypeptides to the cell surface. Evidence was also obtained for the continuous influx of representative samples of the PM into the PL compartment by way of pinocytic vesicles. This was based on the constant flow of fluid phase markers into latex-containing PL and on the internalization of all iodinatable PM polypeptides into this locus. These observations provide evidence for the continuous, bidirectional flow of membrane polypeptides between the PM and the secondary lysosome and represent an example of a membrane flow and recycling mechanism.

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson R. G., Goldstein J. L., Brown M. S. A mutation that impairs the ability of lipoprotein receptors to localise in coated pits on the cell surface of human fibroblasts. Nature. 1977 Dec 22;270(5639):695–699. doi: 10.1038/270695a0. [DOI] [PubMed] [Google Scholar]
  2. Carpenter G., Cohen S. 125I-labeled human epidermal growth factor. Binding, internalization, and degradation in human fibroblasts. J Cell Biol. 1976 Oct;71(1):159–171. doi: 10.1083/jcb.71.1.159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Coffey J. W., De Duve C. Digestive activity of lysosomes. I. The digestion of proteins by extracts of rat liver lysosomes. J Biol Chem. 1968 Jun 25;243(12):3255–3263. [PubMed] [Google Scholar]
  4. Edidin M., Fambrough D. Fluidity of the surface of cultured muscle fibers. Rapid lateral diffusion of marked surface antigens. J Cell Biol. 1973 Apr;57(1):27–37. doi: 10.1083/jcb.57.1.27. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Ehrenreich B. A., Cohn Z. A. The uptake and digestion of iodinated human serum albumin by macrophages in vitro. J Exp Med. 1967 Nov 1;126(5):941–958. doi: 10.1084/jem.126.5.941. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Farquhar M. G. Recovery of surface membrane in anterior pituitary cells. Variations in traffic detected with anionic and cationic ferritin. J Cell Biol. 1978 Jun;77(3):R35–R42. doi: 10.1083/jcb.77.3.r35. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gonatas N. K., Steiber A., Kim S. U., Graham D. I., Avrameas S. Internalization of neuronal plasma membrane ricin receptors into the Golgi apparatus. Exp Cell Res. 1975 Sep;94(2):426–431. doi: 10.1016/0014-4827(75)90508-x. [DOI] [PubMed] [Google Scholar]
  8. Graham R. C., Jr, Karnovsky M. J. The early stages of absorption of injected horseradish peroxidase in the proximal tubules of mouse kidney: ultrastructural cytochemistry by a new technique. J Histochem Cytochem. 1966 Apr;14(4):291–302. doi: 10.1177/14.4.291. [DOI] [PubMed] [Google Scholar]
  9. Hubbard A. L., Cohn Z. A. Externally disposed plasma membrane proteins. II. Metabolic fate of iodinated polypeptides of mouse L cells. J Cell Biol. 1975 Feb;64(2):461–479. doi: 10.1083/jcb.64.2.461. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Koppel D. E., Axelrod D., Schlessinger J., Elson E. L., Webb W. W. Dynamics of fluorescence marker concentration as a probe of mobility. Biophys J. 1976 Nov;16(11):1315–1329. doi: 10.1016/S0006-3495(76)85776-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  12. Muller W. A., Steinman R. M., Cohn Z. A. The membrane proteins of the vacuolar system I. Analysis of a novel method of intralysosomal iodination. J Cell Biol. 1980 Jul;86(1):292–303. doi: 10.1083/jcb.86.1.292. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Poo M., Cone R. A. Lateral diffusion of rhodopsin in the photoreceptor membrane. Nature. 1974 Feb 15;247(5441):438–441. doi: 10.1038/247438a0. [DOI] [PubMed] [Google Scholar]
  14. RYSER H. J. COMPARISON OF THE INCORPORATION OF TYROSINE AND ITS IODINATED ANALOGS INTO THE PROTEINS OF EHRLICH ASCITES TUMOR CELLS AND RAT-LIVER SLICES. Biochim Biophys Acta. 1963 Dec 13;78:759–762. doi: 10.1016/0006-3002(63)91051-5. [DOI] [PubMed] [Google Scholar]
  15. Werb Z., Cohn Z. A. Plasma membrane synthesis in the macrophage following phagocytosis of polystyrene latex particles. J Biol Chem. 1972 Apr 25;247(8):2439–2446. [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES