Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1980 Jul 1;86(1):199–211. doi: 10.1083/jcb.86.1.199

Polarization of endocytosis and receptor topography on cultured macrophages

PMCID: PMC2110654  PMID: 7419574

Abstract

In the 1774.2 macrophage cell line, microtubule disassembly by colchicine causes the polarization of membrane functions ane structure. Colchicine-treated cells develop a bulge or protuberance that is bordered by microvillous membrane. The protuberance is the site of concanavalin A cap formation. The fluid pinocytosis of horseradish peroxidase and of fluorescein- and rhodamine-conjugated high molecular- weight dextrans, the adsorptive pinocytosis of concanavalin A, and the concentration and phagocytosis at 37 degrees C of a range of phagocytic particles (IgG- and complement-opsonized erythrocytes, complement- opsonized zymosan, latex shpres, albumin-stabilized oil droplets) are all similarly restricted to the protuberance. A reduction in the rate of dextran pinocytosis, determined by fluorimetry, and reductions in phagocytic rates for oil emulsion and IgG-opsonized erythrocytes accompany the polarization of endocytic activity in colchicine-trated 1774.2 macrophages. Membrane receptors for phagocytic particles are not confined to the protuberance but rather may display their own unique topographical asymmetry. The inherent topography of receptors was inferred from particle distribution under conditions that limit particle-receptor redistribution (after labeling at 4 degrees C or a very brief incubation at 37 degrees C). Under these restrictive conditions, latex binding sites were detected over the whole membrane whereas receptors for IgG-opsonized erythrocytes, aggregated IgG, complement-opsonized erythrocytes, and complement-opsonized zymosan were excluded from the protuberance. Thus, functional (endocytosis) and structural (inherent receptor distribution) analyses of membrane topography define different patterns of asymmetry in protuberant cells. The asymmetry induced in 1774.2 macrophages by colchicine is highly analogous to the functional and structural polarity of epithelial cells. Exploration of this analogy may provide insight into the development of polarized epithelia and, more generally, into mechanisms by which specialized areas of membrane are established.

Full Text

The Full Text of this article is available as a PDF (1.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albertini D. F., Berlin R. D., Oliver J. M. The mechanism of concanavalin A cap formation in leukocytes. J Cell Sci. 1977 Aug;26:57–75. doi: 10.1242/jcs.26.1.57. [DOI] [PubMed] [Google Scholar]
  2. Allison A. C., Davies P. Mechanisms of endocytosis and exocytosis. Symp Soc Exp Biol. 1974;(28):419–446. [PubMed] [Google Scholar]
  3. Anderson C. L., Grey H. M. Receptors for aggregated IgG on mouse lymphocytes: their presence on thymocytes, thymus-derived, and bone marrow-derived lymphocytes. J Exp Med. 1974 May 1;139(5):1175–1188. doi: 10.1084/jem.139.5.1175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Ash J. F., Louvard D., Singer S. J. Antibody-induced linkages of plasma membrane proteins to intracellular actomyosin-containing filaments in cultured fibroblasts. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5584–5588. doi: 10.1073/pnas.74.12.5584. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Berlin R. D., Fera J. P. Changes in membrane microviscosity associated with phagocytosis: effects of colchicine. Proc Natl Acad Sci U S A. 1977 Mar;74(3):1072–1076. doi: 10.1073/pnas.74.3.1072. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Berlin R. D., Fera J. P., Pfeiffer J. R. Reversible phagocytosis in rabbit polymorphonuclear leukocytes. J Clin Invest. 1979 Jun;63(6):1137–1144. doi: 10.1172/JCI109407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Berlin R. D., Oliver J. M. Analogous ultrastructure and surface properties during capping and phagocytosis in leukocytes. J Cell Biol. 1978 Jun;77(3):789–804. doi: 10.1083/jcb.77.3.789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Berlin R. D., Oliver J. M., Walter R. J. Surface functions during Mitosis I: phagocytosis, pinocytosis and mobility of surface-bound Con A. Cell. 1978 Oct;15(2):327–341. doi: 10.1016/0092-8674(78)90002-8. [DOI] [PubMed] [Google Scholar]
  9. Bhisey A. N., Freed J. J. Altered movement of endosomes in colchicine-treated cultured macrophages. Exp Cell Res. 1971 Feb;64(2):430–438. doi: 10.1016/0014-4827(71)90097-8. [DOI] [PubMed] [Google Scholar]
  10. Burchill B. R., Oliver J. M., Pearson C. B., Leinbach E. D., Berlin R. D. Microtubule dynamics and glutathione metabolism in phagocytizing human polymorphonuclear leukocytes. J Cell Biol. 1978 Feb;76(2):439–447. doi: 10.1083/jcb.76.2.439. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Dickler H. B., Kunkel H. G. Interaction of aggregated -globulin with B lymphocytes. J Exp Med. 1972 Jul 1;136(1):191–196. doi: 10.1084/jem.136.1.191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Fujita M., Ota H., Kawai K., Matsui H., Nakao M. Differential isolation of microvillous and basolateral plasma membranes from intestinal mucosa: mutually exclusive distribution of digestive enzymes and ouabain-sensitive ATPase. Biochim Biophys Acta. 1972 Aug 9;274(2):336–347. doi: 10.1016/0005-2736(72)90181-2. [DOI] [PubMed] [Google Scholar]
  13. Greenspan H. P. On fluid-mechanical simulations of cell division and movement. J Theor Biol. 1978 Jan 7;70(1):125–134. doi: 10.1016/0022-5193(78)90305-3. [DOI] [PubMed] [Google Scholar]
  14. Griffin F. M., Jr, Griffin J. A., Leider J. E., Silverstein S. C. Studies on the mechanism of phagocytosis. I. Requirements for circumferential attachment of particle-bound ligands to specific receptors on the macrophage plasma membrane. J Exp Med. 1975 Nov 1;142(5):1263–1282. doi: 10.1084/jem.142.5.1263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Griffin F. M., Jr, Griffin J. A., Silverstein S. C. Studies on the mechanism of phagocytosis. II. The interaction of macrophages with anti-immunoglobulin IgG-coated bone marrow-derived lymphocytes. J Exp Med. 1976 Sep 1;144(3):788–809. doi: 10.1084/jem.144.3.788. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hartwig J. H., Davies W. A., Stossel T. P. Evidence for contractile protein translocation in macrophage spreading, phagocytosis, and phagolysosome formation. J Cell Biol. 1977 Dec;75(3):956–967. doi: 10.1083/jcb.75.3.956. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Klaus G. G. Cytochalasin B. Dissociation of pinocytosis and phagocytosis by peritoneal macrophages. Exp Cell Res. 1973 Apr;79(1):73–78. doi: 10.1016/0014-4827(73)90490-4. [DOI] [PubMed] [Google Scholar]
  18. Malawista S. E. Microtubules and the mobilization of lysosomes in phagocytizing human leukocytes. Ann N Y Acad Sci. 1975 Jun 30;253:738–749. doi: 10.1111/j.1749-6632.1975.tb19242.x. [DOI] [PubMed] [Google Scholar]
  19. Mooseker M. S., Tilney L. G. Organization of an actin filament-membrane complex. Filament polarity and membrane attachment in the microvilli of intestinal epithelial cells. J Cell Biol. 1975 Dec;67(3):725–743. doi: 10.1083/jcb.67.3.725. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Muschel R. J., Rosen N., Bloom B. R. Isolation of variants in phagocytosis of a macrophage-like continuous cell line. J Exp Med. 1977 Jan 1;145(1):175–186. doi: 10.1084/jem.145.1.175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Nicolson G. L. Trans-membrane control of the receptors on normal and tumor cells. II. Surface changes associated with transformation and malignancy. Biochim Biophys Acta. 1976 Apr 30;458(1):1–72. doi: 10.1016/0304-419x(76)90014-7. [DOI] [PubMed] [Google Scholar]
  22. Oliver J. M., Albertini D. F., Berlin R. D. Effects of glutathione-oxidizing agents on microtubule assembly and microtubule-dependent surface properties of human neutrophils. J Cell Biol. 1976 Dec;71(3):921–932. doi: 10.1083/jcb.71.3.921. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Oliver J. M. Concanavalin A cap formation on human polymorphonuclear leukocytes induced by R17934, a new antitumor drug that interferes with microtubule assembly. J Reticuloendothel Soc. 1976 Jun;19(6):389–395. [PubMed] [Google Scholar]
  24. Oliver J. M., Lalchandani R., Becker E. L. Actin redistribution during Concanavalin A cap formation in rabbit neutrophils. J Reticuloendothel Soc. 1977 May;21(5):359–364. [PubMed] [Google Scholar]
  25. Oliver J. M., Ukena T. E., Berlin R. D. Effects of phagocytosis and colchicine on the distribution of lectin-binding sites on cell surfaces. Proc Natl Acad Sci U S A. 1974 Feb;71(2):394–398. doi: 10.1073/pnas.71.2.394. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Piasek A., Thyberg J. Effects of colchicine on endocytosis and cellular inactivation of horseradish peroxidase in cultured chondrocytes. J Cell Biol. 1979 May;81(2):426–437. doi: 10.1083/jcb.81.2.426. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Quintart J., Leroy-Houyet M. A., Trouet A., Baudhuin P. Endocytosis and chloroquine accumulation during the cell cycle of hepatoma cells in culture. J Cell Biol. 1979 Sep;82(3):644–653. doi: 10.1083/jcb.82.3.644. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Ralph P., Nakoinz I. Phagocytosis and cytolysis by a macrophage tumour and its cloned cell line. Nature. 1975 Oct 2;257(5525):393–394. doi: 10.1038/257393a0. [DOI] [PubMed] [Google Scholar]
  29. SABATINI D. D., BENSCH K., BARRNETT R. J. Cytochemistry and electron microscopy. The preservation of cellular ultrastructure and enzymatic activity by aldehyde fixation. J Cell Biol. 1963 Apr;17:19–58. doi: 10.1083/jcb.17.1.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Sassier P., Bergeron M. Cellular changes in the small intestine epithelium in the course of cell proliferation and maturation. Subcell Biochem. 1978;5:129–185. doi: 10.1007/978-1-4615-7942-7_3. [DOI] [PubMed] [Google Scholar]
  31. Schreiner G. F., Braun J., Unanue E. R. Spontaneous redistribution of surface immunoglobulin in the motile B lymphocyte. J Exp Med. 1976 Dec 1;144(6):1683–1688. doi: 10.1084/jem.144.6.1683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Schreiner G. F., Unanue E. R. Membrane and cytoplasmic changes in B lymphocytes induced by ligand-surface immunoglobulin interaction. Adv Immunol. 1976;24:37–165. doi: 10.1016/s0065-2776(08)60329-6. [DOI] [PubMed] [Google Scholar]
  33. Seljelid R., Nakken K. F. Endocytosis of thyroglobulin and the release of thyroid hormone. Scand J Clin Lab Invest Suppl. 1968;106:125–143. [PubMed] [Google Scholar]
  34. Simionescu N., Simionescu M., Palade G. E. Permeability of intestinal capillaries. Pathway followed by dextrans and glycogens. J Cell Biol. 1972 May;53(2):365–392. doi: 10.1083/jcb.53.2.365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Stahl P. D., Rodman J. S., Miller M. J., Schlesinger P. H. Evidence for receptor-mediated binding of glycoproteins, glycoconjugates, and lysosomal glycosidases by alveolar macrophages. Proc Natl Acad Sci U S A. 1978 Mar;75(3):1399–1403. doi: 10.1073/pnas.75.3.1399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Steinman R. M., Brodie S. E., Cohn Z. A. Membrane flow during pinocytosis. A stereologic analysis. J Cell Biol. 1976 Mar;68(3):665–687. doi: 10.1083/jcb.68.3.665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Steinman R. M., Silver J. M., Cohn Z. A. Pinocytosis in fibroblasts. Quantitative studies in vitro. J Cell Biol. 1974 Dec;63(3):949–969. doi: 10.1083/jcb.63.3.949. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Stern P. L., Bretscher M. S. Capping of exogenous Forssman glycolipid on cells. J Cell Biol. 1979 Sep;82(3):829–833. doi: 10.1083/jcb.82.3.829. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Stossel T. P., Mason R. J., Hartwig J., Vaughan M. Quantitative studies of phagocytosis by polymorphonuclear leukocytes: use of emulsions to measure the initial rate of phagocytosis. J Clin Invest. 1972 Mar;51(3):615–624. doi: 10.1172/JCI106851. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Tsan M. F., Berlin R. D. Effect of phagocytosis on membrane transport of nonelectrolytes. J Exp Med. 1971 Oct 1;134(4):1016–1035. doi: 10.1084/jem.134.4.1016. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Ukena T. E., Berlin R. D. Effect of colchicine and vinblastine on the topographical separation of membrane functions. J Exp Med. 1972 Jul 1;136(1):1–7. doi: 10.1084/jem.136.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Wagner R., Rosenberg M., Estensen R. Endocytosis in Chang liver cells. Quantitation by sucrose- 3 H uptake and inhibition by cytochalasin B. J Cell Biol. 1971 Sep;50(3):804–817. doi: 10.1083/jcb.50.3.804. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Wetzel B. K., Spicer S. S., Wollman S. H. Changes in fine structure and acid phosphatase localization in rat thyroid cells following thyrotropin administration. J Cell Biol. 1965 Jun;25(3):593–618. doi: 10.1083/jcb.25.3.593. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. de Petris S., Raff M. C. Fluidity of the plasma membrane and its implications for cell movement. Ciba Found Symp. 1973;14:27–52. doi: 10.1002/9780470719978.ch3. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES