Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1980 Jul 1;86(1):87–95. doi: 10.1083/jcb.86.1.87

Association of actin with sperm centrioles: isolation of centriolar complexes and immunofluorescent localization of actin

PMCID: PMC2110660  PMID: 6106646

Abstract

The centrioles of cnidarian sperm associate with striated specializations (pericentriolar processes) during spermiogenesis. Three functions have been proposed for the role of these structures: (a) an anchoring mechanism for the sperm flagellum, (b) a signal-transmitting mechanism for communication between sperm head and tal, and (c) a contractile mechanism involved in motor function of the sperm flagellum. To investigate these proposed functions, we developed a technique for the isolation and purification of Hydractinia sperm distal centriles with attached pericentriolar processes. SDS polyacrylamide electrophoretic profiles of whole sperm and pericentriolar process proteins revealed a prominent protein that comigrates with rabbit and penaeid shrimp muscle actin. To label and localize actin in hydroid spem, we produced in rabbits a highly specific antiserum to invertebrate actin that cross-reacts with both invertebrate and vertebrate muscle and nonmuscle actin. Immunofluorescent double antibody labeling of hydroid sperm with antiactin has demonstrated the presence of actin in the pericentriolar process region of the sperm. In earlier reports, it has been proposed that pericentriolar processes, if contractile, could alter the mid- piece asymmetry of hydroid sperm, facilitating the directional motility that these cells demonstrate in respone to egg-released chemoattractants. The present results support this hypothesis.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson R. G. Biochemical and cytochemical evidence for ATPase activity in basal bodies isolated from oviduct. J Cell Biol. 1977 Aug;74(2):547–560. doi: 10.1083/jcb.74.2.547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Dewel W. C., Clark W. H., Jr An ultrastructural investigation of spermiogenesis and the mature sperm in the anthozoan Bunodosoma cavernata (Cnidaria). J Ultrastruct Res. 1972 Aug;40(3):417–431. doi: 10.1016/s0022-5320(72)90111-6. [DOI] [PubMed] [Google Scholar]
  3. FLOCK A., DUVALL A. J., 3rd THE ULTRASTRUCTURE OF THE KINOCILIUM OF THE SENSORY CELLS IN THE INNER EAR AND LATERAL LINE ORGANS. J Cell Biol. 1965 Apr;25:1–8. doi: 10.1083/jcb.25.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Flock A., Jorgensen J. M. The ultrastructure of lateral line sense organs in the juvenile salamander Ambystoma mexicanum. Cell Tissue Res. 1974;152(3):283–292. doi: 10.1007/BF00223950. [DOI] [PubMed] [Google Scholar]
  5. Goodenough U. W., Weiss R. L. Interrelationships between microtubules, a striated fiber, and the gametic mating structure of Chlamydomonas reinhardi. J Cell Biol. 1978 Feb;76(2):430–438. doi: 10.1083/jcb.76.2.430. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Grant J. D. Epithelioma of the Right Vocal Cord in a Man aged 60; Removal by Thyrotomy. Proc R Soc Med. 1910;3(LARYNGOL):17–18. [PMC free article] [PubMed] [Google Scholar]
  7. Hinsch G. W., Clark W. H., Jr Comparative fine structure of Cnidaria spermatozoa. Biol Reprod. 1973 Feb;8(1):62–73. doi: 10.1093/biolreprod/8.1.62. [DOI] [PubMed] [Google Scholar]
  8. Lazarides E., Weber K. Actin antibody: the specific visualization of actin filaments in non-muscle cells. Proc Natl Acad Sci U S A. 1974 Jun;71(6):2268–2272. doi: 10.1073/pnas.71.6.2268. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Matsusaka T. ATPase activity in the ciliary rootlet of human retinal rods. J Cell Biol. 1967 Apr;33(1):203–208. doi: 10.1083/jcb.33.1.203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Miller R. L. Chemotactic behavior of the sperm of chitons (Mollusca: Polyplacophora). J Exp Zool. 1977 Nov;202(2):203–211. doi: 10.1002/jez.1402020209. [DOI] [PubMed] [Google Scholar]
  11. Miller R. L. Chemotaxis during fertilization in the hydroid Campanularia. J Exp Zool. 1966 Jun;162(1):23–44. doi: 10.1002/jez.1401620104. [DOI] [PubMed] [Google Scholar]
  12. Miller R. L. Gel filtration of the sperm attractants of some marine hydrozoa. J Exp Zool. 1972 Dec;182(3):281–297. doi: 10.1002/jez.1401820302. [DOI] [PubMed] [Google Scholar]
  13. Peachey L. D. The sarcoplasmic reticulum and transverse tubules of the frog's sartorius. J Cell Biol. 1965 Jun;25(3 Suppl):209–231. doi: 10.1083/jcb.25.3.209. [DOI] [PubMed] [Google Scholar]
  14. SZOLLOSI D. THE STRUCTURE AND FUNCTION OF CENTRIOLES AND THEIR SATELLITES IN THE JELLYFISH PHIALIDIUM GREGARIUM. J Cell Biol. 1964 Jun;21:465–479. doi: 10.1083/jcb.21.3.465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Salisbury J. L., Floyd G. L. Calcium-induced contraction of the rhizoplast of a quadriflagellate green alga. Science. 1978 Dec 1;202(4371):975–977. doi: 10.1126/science.202.4371.975. [DOI] [PubMed] [Google Scholar]
  16. Simpson P. A., Dingle A. D. Variable periodicity in the rhizoplast of Naegleria flagellates. J Cell Biol. 1971 Oct;51(1):323–328. doi: 10.1083/jcb.51.1.323. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Spudich J. A., Watt S. The regulation of rabbit skeletal muscle contraction. I. Biochemical studies of the interaction of the tropomyosin-troponin complex with actin and the proteolytic fragments of myosin. J Biol Chem. 1971 Aug 10;246(15):4866–4871. [PubMed] [Google Scholar]
  18. Spurr A. R. A low-viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res. 1969 Jan;26(1):31–43. doi: 10.1016/s0022-5320(69)90033-1. [DOI] [PubMed] [Google Scholar]
  19. Stephens R. E. The basal apparatus. Mass isolation from the molluscan ciliated gill epithelium and a preliminary characterization of striated rootlets. J Cell Biol. 1975 Feb;64(2):408–420. doi: 10.1083/jcb.64.2.408. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Summers R. G. A new model for the structure of the centriolar satellite complex in spermatozoa. J Morphol. 1972 Jun;137(2):229–241. doi: 10.1002/jmor.1051370208. [DOI] [PubMed] [Google Scholar]
  21. TOKUYASU K., YAMADA E. The fine structure of the retina studied with the electron microscope. IV. Morphogenesis of outer segments of retinal rods. J Biophys Biochem Cytol. 1959 Oct;6:225–230. doi: 10.1083/jcb.6.2.225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Talbot P., Kleve M. G. Hamster sperm cross react with antiactin. J Exp Zool. 1978 Apr;204(1):131–136. doi: 10.1002/jez.1402040112. [DOI] [PubMed] [Google Scholar]
  23. Weber K., Osborn M. The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem. 1969 Aug 25;244(16):4406–4412. [PubMed] [Google Scholar]
  24. Wersäll J., Flock A., Lundquist P. G. Structural basis for directional sensitivity in cochlear and vestibular sensory receptors. Cold Spring Harb Symp Quant Biol. 1965;30:115–132. doi: 10.1101/sqb.1965.030.01.015. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES