Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1980 Sep 1;86(3):784–794. doi: 10.1083/jcb.86.3.784

Proteins synthesized and secreted during rat pancreatic development

PMCID: PMC2110680  PMID: 7410479

Abstract

The synthesis and secretion of proteins during development of the pancreas was analyzed using two-dimensional gel electrophoresis. The pattern of synthesis of the total proteins of the pancreas was found to change very little from 14 to 18 d gestation. In addition, the protein synthetic pattern of the embryonic pancreas was very similar to the protein patterns of several other embryonic tissues (gut, lung, and mesenchyme). Between 18 d gestation and the adult stage, the synthesis of the majority of protein species fades as the synthesis of the secretory (pro)enzymes becomes dominant. Thus, the terminal differentiation of the pancreas appears to involve the dominant expression of a limited set of genes (coding, in part, for the digestive [pro]enzymes) while the pattern of expression of the remaining domain remains relatively unchanged. Many of the secretory (pro)enzymes were identified and their synthesis during development was monitored. The synthesis of several secretory proteins was detected between 15 and 18 d gestation (e.g., amylase and chymotrypsinogen), whereas the synthesis of others was not detected until after 18 d gestation (i.e., trypsinogen, ribonuclease, proelastase, and lipase). Between 18 d gestation and the adult stage, the synthesis of the digestive (pro)enzymes increases to > 90% of pancreatic protein synthesis. The secretion of digestive (pro)enzymes was detected as early as 15 d gestation. The selective release of a second set of proteins was detected in the early embryo. These proteins are not detected in the adult pancreas or in zymogen granules but are also released by several other embryonic tissues. The function of this set of proteins is unknown.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bonner W. M., Laskey R. A. A film detection method for tritium-labelled proteins and nucleic acids in polyacrylamide gels. Eur J Biochem. 1974 Jul 1;46(1):83–88. doi: 10.1111/j.1432-1033.1974.tb03599.x. [DOI] [PubMed] [Google Scholar]
  2. CHARLWOOD P. A. ULTRACENTRIFUGAL CHARACTERISTICS OF HUMAN, MONEKY AND RAT TRANSFERRINS. Biochem J. 1963 Sep;88:394–398. doi: 10.1042/bj0880394. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Clark W. R., Rutter W. J. Synthesis and accumulation of insulin in the fetal rat pancreas. Dev Biol. 1972 Dec;29(4):468–481. doi: 10.1016/0012-1606(72)90084-x. [DOI] [PubMed] [Google Scholar]
  4. Doyle C. M., Jamieson J. D. Development of secretagogue response in rat pancreatic acinar cells. Dev Biol. 1978 Jul;65(1):11–27. doi: 10.1016/0012-1606(78)90175-6. [DOI] [PubMed] [Google Scholar]
  5. FOLK J. E., PIEZ K. A., CARROLL W. R., GLADNER J. A. Carboxy-peptidase B. 4. Purification and characterization of the porcine enzyme. J Biol Chem. 1960 Aug;235:2272–2277. [PubMed] [Google Scholar]
  6. GOLOSOW N., GROBSTEIN C. Epitheliomesenchymal interaction in pancreatic morphogenesis. Dev Biol. 1962 Apr;4:242–255. doi: 10.1016/0012-1606(62)90042-8. [DOI] [PubMed] [Google Scholar]
  7. GREENE L. J., HIRS C. H., PALADE G. E. On the protein composition of bovine pancreatic zymogen granules. J Biol Chem. 1963 Jun;238:2054–2070. [PubMed] [Google Scholar]
  8. HUMMEL B. C. A modified spectrophotometric determination of chymotrypsin, trypsin, and thrombin. Can J Biochem Physiol. 1959 Dec;37:1393–1399. [PubMed] [Google Scholar]
  9. Harding J. D., MacDonald R. J., Przybyla A. E., Chirgwin J. M., Pictet R. L., Rutter W. J. Changes in the frequency of specific transcripts during development of the pancreas. J Biol Chem. 1977 Oct 25;252(20):7391–7397. [PubMed] [Google Scholar]
  10. Harding J. D., Rutter W. J. Rat pancreatic amylase mRNA. Tissue specificity and accumulation during embryonic development. J Biol Chem. 1978 Dec 25;253(24):8736–8740. [PubMed] [Google Scholar]
  11. KALNITSKY G., HUMMEL J. P., RESNICK H., CARTER J. R., BARNETT L. B., DIERKS C. The relation of structure to enzymatic activity in ribonuclease. Ann N Y Acad Sci. 1959 Sep 4;81:542–569. doi: 10.1111/j.1749-6632.1959.tb49336.x. [DOI] [PubMed] [Google Scholar]
  12. Kemp J. D., Walther B. T., Rutter W. J. Protein synthesis during the secondary developmental transition of the embryonic rat pancreas. J Biol Chem. 1972 Jun 25;247(12):3941–3952. [PubMed] [Google Scholar]
  13. Meldolesi J., Jamieson J. D., Palade G. E. Composition of cellular membranes in the pancreas of the guinea pig. I. Isolation of membrane fractions. J Cell Biol. 1971 Apr;49(1):109–129. doi: 10.1083/jcb.49.1.109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. O'Farrell P. H. High resolution two-dimensional electrophoresis of proteins. J Biol Chem. 1975 May 25;250(10):4007–4021. [PMC free article] [PubMed] [Google Scholar]
  15. O'Farrell P. Z., Goodman H. M., O'Farrell P. H. High resolution two-dimensional electrophoresis of basic as well as acidic proteins. Cell. 1977 Dec;12(4):1133–1141. doi: 10.1016/0092-8674(77)90176-3. [DOI] [PubMed] [Google Scholar]
  16. Pictet R. L., Clark W. R., Williams R. H., Rutter W. J. An ultrastructural analysis of the developing embryonic pancreas. Dev Biol. 1972 Dec;29(4):436–467. doi: 10.1016/0012-1606(72)90083-8. [DOI] [PubMed] [Google Scholar]
  17. Przybyla A. E., MacDonald R. J., Harding J. D., Pictet R. L., Rutter W. J. Accumulation of the predominant pancreatic mRNAs during embryonic development. J Biol Chem. 1979 Mar 25;254(6):2154–2159. [PubMed] [Google Scholar]
  18. RUTTER W. J., WESSELLS N. K., GROBSTEIN C. CONTROL OF SPECIFIC SYNTHESIS IN THE DEVELOPING PANCREAS. Natl Cancer Inst Monogr. 1964 Apr;13:51–65. [PubMed] [Google Scholar]
  19. Rall L. B., Pictet R. L., Williams R. H., Rutter W. J. Early differentiation of glucagon-producing cells in embryonic pancreas: a possible developmental role for glucagon. Proc Natl Acad Sci U S A. 1973 Dec;70(12):3478–3482. doi: 10.1073/pnas.70.12.3478. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Rutter W. J., Kemp J. D., Bradshaw W. S., Clark W. R., Ronzio R. A., Sanders T. G. Regulation of specific protein synthesis in cytodifferentiation. J Cell Physiol. 1968 Oct;72(2 Suppl):1–18. doi: 10.1002/jcp.1040720403. [DOI] [PubMed] [Google Scholar]
  21. Sanders T. G., Rutter W. J. The developmental regulation of amylolytic and proteolytic enzymes in the embryonic rat pancreas. J Biol Chem. 1974 Jun 10;249(11):3500–3509. [PubMed] [Google Scholar]
  22. Scheele G. A., Palade G. E. Studies on the guinea pig pancreas. Parallel discharge of exocrine enzyme activities. J Biol Chem. 1975 Apr 10;250(7):2660–2670. [PubMed] [Google Scholar]
  23. Scheele G. A. Two-dimensional gel analysis of soluble proteins. Charaterization of guinea pig exocrine pancreatic proteins. J Biol Chem. 1975 Jul 25;250(14):5375–5385. [PubMed] [Google Scholar]
  24. Tartakoff A., Greene L. J., Palade G. E. Studies on the guinea pig pancreas. Fractionation and partial characterization of exocrine proteins. J Biol Chem. 1974 Dec 10;249(23):7420–7431. [PubMed] [Google Scholar]
  25. de Gasparo M., Pictet R. L., Rall L. B., Rutter W. J. Control of insulin secretion in the developing pancreatic rudiment. Dev Biol. 1975 Nov;47(1):106–122. doi: 10.1016/0012-1606(75)90267-5. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES