Abstract
Extensive and unequivocal tight junctions are here reported between the lateral borders of the cellular layer that circumscribes the arachnid (spider) central nervous system. This account details the features of these structures, which form a beltlike reticulum that is more complex than the simple linear tight junctions hitherto found in invertebrate tissues and which bear many of the characteristics of vertebrate zonulae occludentes. We also provide evidence that these junctions form the basis of a permeability barrier to exogenous compounds. In thin sections, the tight junctions are identifiable as punctate points of membrane apposition; they are seen to exclude the stain and appear as election- lucent moniliform strands along the lines of membrane fusion in en face views of uranyl-calcium-treated tissues. In freeze-fracture replicas, the regions of close membrane apposition exhibit P-face (PF) ridges and complementary E-face (EF) furrows that are coincident across face transitions, although slightly offset with respect to one another. The free inward diffusion of both ionic and colloidal lanthanum is inhibited by these punctate tight junctions so that they appear to form the basis of a circumferential blood-brain barrier. These results support the contention that tight junctions exist in the tissues of the invertebrata in spite of earlier suggestions that (a) they are unique to vertebrates and (b) septate junctions are the equivalent invertebrate occluding structure. The component tight junctional 8- to 10-nm-particulate PF ridges are intimately intercalated with, but clearly distinct from, inverted gap junctions possessing the 13-nm EF particles typical of arthropods. Hence, no confusion can occur as to which particles belong to each of the two junctional types, as commonly happens with vertebrate tissues, especially in the analysis of developing junctions. Indeed, their coexistance in this way supports the idea, over which there has been some controversy, that the intramembrane particles making up these two junctional types must be quite distinct entities rather than products of a common precursor.
Full Text
The Full Text of this article is available as a PDF (1.6 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Brightman M. W. Morphology of blood-brain interfaces. Exp Eye Res. 1977;25 (Suppl):1–25. doi: 10.1016/s0014-4835(77)80008-0. [DOI] [PubMed] [Google Scholar]
- Brightman M. W., Reese T. S. Junctions between intimately apposed cell membranes in the vertebrate brain. J Cell Biol. 1969 Mar;40(3):648–677. doi: 10.1083/jcb.40.3.648. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bullivant S., Loewenstein W. R. Structure of coupled and uncoupled cell junctions. J Cell Biol. 1968 Jun;37(3):621–632. doi: 10.1083/jcb.37.3.621. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chi C., Carlson D., St Marie R. L. Membrane specializations in the peripheral retina of the housefly Musca domestica L. Cell Tissue Res. 1979 May 25;198(3):501–520. doi: 10.1007/BF00234194. [DOI] [PubMed] [Google Scholar]
- Claude P., Goodenough D. A. Fracture faces of zonulae occludentes from "tight" and "leaky" epithelia. J Cell Biol. 1973 Aug;58(2):390–400. doi: 10.1083/jcb.58.2.390. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Connell C. J. A freeze-fracture and lanthanum tracer study of the complex junction between Sertoli cells of the canine testis. J Cell Biol. 1978 Jan;76(1):57–75. doi: 10.1083/jcb.76.1.57. [DOI] [PMC free article] [PubMed] [Google Scholar]
- De Camilli P., Peluchetti D., Meldolesi J. Structural difference between luminal and lateral plasmalemma in pancreatic acinar cells. Nature. 1974 Mar 15;248(445):245–247. doi: 10.1038/248245b0. [DOI] [PubMed] [Google Scholar]
- Elias P. M., Friend D. S. Vitamin-A-induced mucous metaplasia. An in vitro system for modulating tight and gap junction differentiation. J Cell Biol. 1976 Feb;68(2):173–188. doi: 10.1083/jcb.68.2.173. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FARQUHAR M. G., PALADE G. E. Junctional complexes in various epithelia. J Cell Biol. 1963 May;17:375–412. doi: 10.1083/jcb.17.2.375. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Filshie B. K., Flower N. E. Junctional structures in hydra. J Cell Sci. 1977 Feb;23:151–172. doi: 10.1242/jcs.23.1.151. [DOI] [PubMed] [Google Scholar]
- Flower N. E. A new junctional structure in the epithelia of insects of the order Dictyoptera. J Cell Sci. 1972 May;10(3):683–691. doi: 10.1242/jcs.10.3.683. [DOI] [PubMed] [Google Scholar]
- Flower N. E., Filshie B. K. Junctional structures in the midgut cells of lepidopteran caterpillars. J Cell Sci. 1975 Jan;17(1):221–239. doi: 10.1242/jcs.17.1.221. [DOI] [PubMed] [Google Scholar]
- Flower N. E., Walker G. D. Rectal papillae in Musca domestica: the cuticle and lateral membranes. J Cell Sci. 1979 Oct;39:167–186. doi: 10.1242/jcs.39.1.167. [DOI] [PubMed] [Google Scholar]
- Friend D. S., Gilula N. B. A distinctive cell contact in the rat adrenal cortex. J Cell Biol. 1972 Apr;53(1):148–163. doi: 10.1083/jcb.53.1.148. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Friend D. S., Gilula N. B. Variations in tight and gap junctions in mammalian tissues. J Cell Biol. 1972 Jun;53(3):758–776. doi: 10.1083/jcb.53.3.758. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Georges D. Gap and tight junctions in tunicates. Study in conventional and freeze-fracture techniques. Tissue Cell. 1979;11(4):781–792. doi: 10.1016/0040-8166(79)90031-4. [DOI] [PubMed] [Google Scholar]
- Gilula N. B., Branton D., Satir P. The septate junction: a structural basis for intercellular coupling. Proc Natl Acad Sci U S A. 1970 Sep;67(1):213–220. doi: 10.1073/pnas.67.1.213. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Green C. R., Bergquist P. R., Bullivant S. An anastomosing septate junction in endothelial cells of the phylum echinodermata. J Ultrastruct Res. 1979 Jul;68(1):72–80. doi: 10.1016/s0022-5320(79)90143-6. [DOI] [PubMed] [Google Scholar]
- Hand A. R., Gobel S. The structural organization of the septate and gap junctions of Hydra. J Cell Biol. 1972 Feb;52(2):397–408. doi: 10.1083/jcb.52.2.397. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hoi Sang U., Saier M. H., Jr, Ellisman M. H. Tight junction formation is closely linked to the polar redistribution of intramembranous particles in aggregating MDCK epithelia. Exp Cell Res. 1979 Sep;122(2):384–391. doi: 10.1016/0014-4827(79)90315-x. [DOI] [PubMed] [Google Scholar]
- King M. G., Spencer A. N. Gap and septate junctions in the excitable endoderm of Polyorchis penicillatus (Hydrozoa, Anthomedusae). J Cell Sci. 1979 Apr;36:391–400. doi: 10.1242/jcs.36.1.391. [DOI] [PubMed] [Google Scholar]
- LOEWENSTEIN W. R., KANNO Y. STUDIES ON AN EPITHELIAL (GLAND) CELL JUNCTION. I. MODIFICATIONS OF SURFACE MEMBRANE PERMEABILITY. J Cell Biol. 1964 Sep;22:565–586. doi: 10.1083/jcb.22.3.565. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lane N. J. Developmental stages in the formation of inverted gap junctions during turnover in the adult horseshoe crab, Limulus. J Cell Sci. 1978 Aug;32:293–305. doi: 10.1242/jcs.32.1.293. [DOI] [PubMed] [Google Scholar]
- Lane N. J. Fine structure of a lepidopteram nervous system and its accessibility to peroxidase and lanthanum. Z Zellforsch Mikrosk Anat. 1972;131(2):205–222. doi: 10.1007/BF00306928. [DOI] [PubMed] [Google Scholar]
- Lane N. J. Freeze-fracture and tracer studies on the intercellular junctions of insect rectal tissues. Tissue Cell. 1979;11(3):481–506. doi: 10.1016/0040-8166(79)90058-2. [DOI] [PubMed] [Google Scholar]
- Lane N. J., Skaer H. L., Swales L. S. Intercellular junctions in the central nervous system of insects. J Cell Sci. 1977 Aug;26:175–199. doi: 10.1242/jcs.26.1.175. [DOI] [PubMed] [Google Scholar]
- Lane N. J., Swales L. S. Changes in the blood-brain barrier of the central nervous system in the blowfly during development, with special reference to the formation and disaggregation of gap and tight junctions. I. Larval development. Dev Biol. 1978 Feb;62(2):389–414. doi: 10.1016/0012-1606(78)90224-5. [DOI] [PubMed] [Google Scholar]
- Lane N. J., Swales L. S. Changes in the blood-brain barrier of the central nervous system in the blowfly during development, with special reference to the formation and disaggregation of gap and tight junctions. Dev Biol. 1978 Feb;62(2):415–431. doi: 10.1016/0012-1606(78)90225-7. [DOI] [PubMed] [Google Scholar]
- Lane N. J., Swales L. S. Dispersal of junctional particles, not internalization, during the in vivo disappearance of gap junctions. Cell. 1980 Mar;19(3):579–586. doi: 10.1016/s0092-8674(80)80034-1. [DOI] [PubMed] [Google Scholar]
- Lane N. J., Swales L. S. Intercellular junctions and the development of the blood-brain barrier in Manduca sexta. Brain Res. 1979 May 25;168(2):227–245. doi: 10.1016/0006-8993(79)90166-5. [DOI] [PubMed] [Google Scholar]
- Lane N. J. Tight junctions in a fluid-transporting epithelium of an insect. Science. 1979 Apr 6;204(4388):91–93. doi: 10.1126/science.432631. [DOI] [PubMed] [Google Scholar]
- Lane N. J., Treherne J. E. Studies on perineural junctional complexes and the sites of uptake of microperoxidase and lanthanum in the cockroach central nervous system. Tissue Cell. 1972;4(3):427–436. doi: 10.1016/s0040-8166(72)80019-3. [DOI] [PubMed] [Google Scholar]
- Lorber V., Rayns D. G. Cellular junctions in the tunicate heart. J Cell Sci. 1972 Jan;10(1):211–227. doi: 10.1242/jcs.10.1.211. [DOI] [PubMed] [Google Scholar]
- Lord B. A., DiBona D. R. Role of the septate junction in the regulation of paracellular transepithelial flow. J Cell Biol. 1976 Dec;71(3):967–972. doi: 10.1083/jcb.71.3.967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maddrell S. H., Treherne J. E. The ultrastructure of the perineurium in two insect species, Carausius morosus and Periplaneta americana. J Cell Sci. 1967 Mar;2(1):119–128. doi: 10.1242/jcs.2.1.119. [DOI] [PubMed] [Google Scholar]
- McLaughlin B. J. The accessibility of a developing lepidopteran nervous system to lanthanum and peroxidase. J Cell Sci. 1974 Mar;14(2):389–409. doi: 10.1242/jcs.14.2.389. [DOI] [PubMed] [Google Scholar]
- Newell P. F., Skelding J. M. Structure and permeability of the septate junction in the kidney sac of Helix pomatia L. Z Zellforsch Mikrosk Anat. 1973 Dec 31;147(1):31–39. doi: 10.1007/BF00306598. [DOI] [PubMed] [Google Scholar]
- Noirot-Timothée C., Smith D. S., Cayer M. L., Noirot C. Septate junctions in insects: comparison between intercellular and intramembranous structures. Tissue Cell. 1978;10(1):125–136. doi: 10.1016/0040-8166(78)90011-3. [DOI] [PubMed] [Google Scholar]
- Noirot C., Noirot-Timothée C. Fine structure of the rectum in cockroaches (Dictyoptera): general organization and intercellular junctions. Tissue Cell. 1976;8(2):345–368. doi: 10.1016/0040-8166(76)90057-4. [DOI] [PubMed] [Google Scholar]
- Peracchia C., Dulhunty A. F. Low resistance junctions in crayfish. Structural changes with functional uncoupling. J Cell Biol. 1976 Aug;70(2 Pt 1):419–439. doi: 10.1083/jcb.70.2.419. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pichon Y., Sattelle D. B., Lane N. J. Conduction processes in the nerve cord of the moth Manduca sexta in relation to its ultrastructure and haemolymph ionic composition. J Exp Biol. 1972 Jun;56(3):717–734. doi: 10.1242/jeb.56.3.717. [DOI] [PubMed] [Google Scholar]
- Reese T. S., Karnovsky M. J. Fine structural localization of a blood-brain barrier to exogenous peroxidase. J Cell Biol. 1967 Jul;34(1):207–217. doi: 10.1083/jcb.34.1.207. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Revel J. P., Brown S. S. Cell junctions in development, with particular reference to the neural tube. Cold Spring Harb Symp Quant Biol. 1976;40:443–455. doi: 10.1101/sqb.1976.040.01.042. [DOI] [PubMed] [Google Scholar]
- Satir P., Gilula N. B. The fine structure of membranes and intercellular communication in insects. Annu Rev Entomol. 1973;18:143–166. doi: 10.1146/annurev.en.18.010173.001043. [DOI] [PubMed] [Google Scholar]
- Shivers R. R. "Tight" junctions in the sheath of normal and regenerating motor nerves of the crayfish, Orconectes virilis. Cell Tissue Res. 1977 Feb 14;177(4):475–480. doi: 10.1007/BF00220608. [DOI] [PubMed] [Google Scholar]
- Staehelin L. A. Structure and function of intercellular junctions. Int Rev Cytol. 1974;39:191–283. doi: 10.1016/s0074-7696(08)60940-7. [DOI] [PubMed] [Google Scholar]
- Szollosi A., Marcaillou C. Electron microscope study of the blood-testis barrier in an insect: Locusta migratoria. J Ultrastruct Res. 1977 May;59(2):158–172. doi: 10.1016/s0022-5320(77)80076-2. [DOI] [PubMed] [Google Scholar]
- Treherne J. E., Lane N. J., Moreton R. B., Pichon Y. A quantitative study of potassium movements in the central nervous system of Periplaneta americana. J Exp Biol. 1970 Aug;53(1):109–136. doi: 10.1242/jeb.53.1.109. [DOI] [PubMed] [Google Scholar]
- Wade J. B., Karnovsky M. J. The structure of the zonula occludens. A single fibril model based on freeze-fracture. J Cell Biol. 1974 Jan;60(1):168–180. doi: 10.1083/jcb.60.1.168. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wall B. J., Oschman J. L., Schmidt B. A. Morphology and function of Malpighian tubules and associated structures in the cockroach, Periplaneta americana. J Morphol. 1975 Jun;146(2):265–306. doi: 10.1002/jmor.1051460207. [DOI] [PubMed] [Google Scholar]
- Welsch U., Buchheim W. Zelljunktionen. Verh Anat Ges. 1978;(72):199–215. [PubMed] [Google Scholar]
- Wood R. L., Kuda A. M. Formation of junctions in regenerating hydra: septate junctions. J Ultrastruct Res. 1980 Jan;70(1):104–117. doi: 10.1016/s0022-5320(80)90026-x. [DOI] [PubMed] [Google Scholar]
- Wood R. L. The cell junctions of hydra as viewed by freeze-fracture replication. J Ultrastruct Res. 1977 Mar;58(3):299–315. doi: 10.1016/s0022-5320(77)90021-1. [DOI] [PubMed] [Google Scholar]
- van Deurs B., Koehler J. K. Tight junctions in the choroid plexus epithelium. A freeze-fracture study including complementary replicas. J Cell Biol. 1979 Mar;80(3):662–673. doi: 10.1083/jcb.80.3.662. [DOI] [PMC free article] [PubMed] [Google Scholar]