Abstract
Postsynaptic densities (PSDs) have been isolated from cerebral cortex, midbrain, cerebellum, and brain stem by the Triton X-100 method previously used in the isolation of cerebral PSDs (Cohen et al., 1977, J. Cell Biol. 74:181). These PSDs have been compared in protein composition, protein phosphorylation, and morphology. Thin-section electron microscopy revealed that cerebral cortex and midbrain PSDs were identical, being approximately 57 nm thick and composed of apparent aggregates 20-30 nm in diameter. Isolated cerebellar PSDs appeared thinner (33 nm) than cerebral cortex PSDs and lacked the apparent 20- to 30-nm aggregates, but had a latticelike structure. In unidirectional and rotary-shadowed replicas, the cerebrum and midbrain PSDs were circular in shape with a large central perforation or hole in the center of them. Cerebellum PSDs did not have a large perforation, but did have numerous smaller perforations in a lattice like structure. Filaments (6-9 nm) were observed connecting possible 20- to 30-nm aggregates in cerebrum PSDs and were also observed radiating from one side of the PSD. Both cerebral cortex and midbrain PSDs exhibited identical protein patterns on SDS gel electrophoresis. In comparison, cerebellar PSDs (a) lacked the major 51,000 Mr protein, (b) contained two times less calmodulin, and (c) contained a unique protein at 73,000 Mr. Calcium plus calmodulin stimulated the phosphorylation of the 51,000 and 62,000 Mr bands in both cerebral cortex and midbrain PSDs. In cerebellar PSDs, only the 58,000 and 62,000 Mr bands were phosphorylated. In the PSDs from all brain regions, cAMP stimulated the phosphorylation of Protein Ia (73,000 Mr), Protein Ib (68.000 Mr), and a 60,000 Mr protein, although cerebrum and midbrain PSDs contained very much higher levels of phosphorylated protein than did the cerebellum. On the basis of the morphological criteria, it is possible that PSDs isolated from cerebrum and midbrain were derived from the Gray type I, or asymmetric, synapses, whereas cerebellum PSDs were derived from the Gray type II, or symmetric, synapses. Since there is some evidence that the type I synapses are involved in excitatory mechanisms while the type II are involved in inhibitory mechanisms, the role of the PSD and of some of its proteins in these synaptic responses is discussed.
Full Text
The Full Text of this article is available as a PDF (2.0 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Blomberg F., Cohen R. S., Siekevitz P. The structure of postsynaptic densities isolated from dog cerebral cortex. II. Characterization and arrangement of some of the major proteins within the structure. J Cell Biol. 1977 Jul;74(1):204–225. doi: 10.1083/jcb.74.1.204. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bloom F. E., Ueda T., Battenberg E., Greengard P. Immunocytochemical localization, in synapses, of protein I, an endogenous substrate for protein kinases in mammalian brain. Proc Natl Acad Sci U S A. 1979 Nov;76(11):5982–5986. doi: 10.1073/pnas.76.11.5982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bretz U., Baggiolini M., Hauser R., Hodel C. Resolution of three distinct populations of nerve endings from rat brain homogenates by zonal isopycnic centrifugation. J Cell Biol. 1974 May;61(2):466–480. doi: 10.1083/jcb.61.2.466. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cohen R. S., Blomberg F., Berzins K., Siekevitz P. The structure of postsynaptic densities isolated from dog cerebral cortex. I. Overall morphology and protein composition. J Cell Biol. 1977 Jul;74(1):181–203. doi: 10.1083/jcb.74.1.181. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cohen R. S., Siekevitz P. Form of the postsynaptic density. A serial section study. J Cell Biol. 1978 Jul;78(1):36–46. doi: 10.1083/jcb.78.1.36. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Colonnier M. Synaptic patterns on different cell types in the different laminae of the cat visual cortex. An electron microscope study. Brain Res. 1968 Jul;9(2):268–287. doi: 10.1016/0006-8993(68)90234-5. [DOI] [PubMed] [Google Scholar]
- Cotman C. W., Banker G., Churchill L., Taylor D. Isolation of postsynaptic densities from rat brain. J Cell Biol. 1974 Nov;63(2 Pt 1):441–455. doi: 10.1083/jcb.63.2.441. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DE ROBERTIS E., PELLEGRINO DE IRALDI A., RODRIGUEZ DE LORES GARNAIZ G., SALGANICOFF L. Cholinergic and non-cholinergic nerve endings in rat brain. I. Isolation and subcellular distribution of acetylcholine and acetylcholinesterase. J Neurochem. 1962 Jan-Feb;9:23–35. doi: 10.1111/j.1471-4159.1962.tb07489.x. [DOI] [PubMed] [Google Scholar]
- Dahl D., Bignami A. Astroglial and axonal proteins in isolated brain filaments. I. Isolation of the glial fibrillary acidic protein and of an immunologically active cyanogen bromide peptide from brain filament preparations of bovine white matter. Biochim Biophys Acta. 1979 Jun 19;578(2):305–316. doi: 10.1016/0005-2795(79)90161-2. [DOI] [PubMed] [Google Scholar]
- De Blas A. L., Wang Y. J., Sorensen R., Mahler H. R. Protein phosphorylation in synaptic membranes regulated by adenosine 3':5'-monophosphate: regional and subcellular distribution of the endogenous substrates. J Neurochem. 1979 Sep;33(3):647–659. doi: 10.1111/j.1471-4159.1979.tb05209.x. [DOI] [PubMed] [Google Scholar]
- Feit H., Kelly P., Cotman C. W. Identification of a protein related to tubulin in the postsynaptic density. Proc Natl Acad Sci U S A. 1977 Mar;74(3):1047–1051. doi: 10.1073/pnas.74.3.1047. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GRAY E. G. Axo-somatic and axo-dendritic synapses of the cerebral cortex: an electron microscope study. J Anat. 1959 Oct;93:420–433. [PMC free article] [PubMed] [Google Scholar]
- Gfeller E., Kuhar M. J., Snyder S. H. Neurotransmitter-specific synaptosomes in rat corpus striatum: morphological variations. Proc Natl Acad Sci U S A. 1971 Jan;68(1):155–159. doi: 10.1073/pnas.68.1.155. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goldman J. E., Schaumburg H. H., Norton W. T. Isolation and characterization of glial filaments from human brain. J Cell Biol. 1978 Aug;78(2):426–440. doi: 10.1083/jcb.78.2.426. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grab D. J., Berzins K., Cohen R. S., Siekevitz P. Presence of calmodulin in postsynaptic densities isolated from canine cerebral cortex. J Biol Chem. 1979 Sep 10;254(17):8690–8696. [PubMed] [Google Scholar]
- Hinds J. W., Hinds P. L. Synapse formation in the mouse olfactory bulb. II. Morphogenesis. J Comp Neurol. 1976 Sep 1;169(1):41–61. doi: 10.1002/cne.901690104. [DOI] [PubMed] [Google Scholar]
- Israël M., Whittaker V. P. The isolation of mossy fibre endings from the granular layer of the cerebellar cortex. Experientia. 1965 Jun 15;21(6):325–326. doi: 10.1007/BF02144693. [DOI] [PubMed] [Google Scholar]
- Iversen L. L., Snyder S. H. Synaptosomes: different populations storing catecholamines and gamma-aminobutyric acid in homogenates of rat brain. Nature. 1968 Nov 23;220(5169):796–798. doi: 10.1038/220796a0. [DOI] [PubMed] [Google Scholar]
- Kelly P. T., Cotman C. W. Synaptic proteins. Characterization of tubulin and actin and identification of a distinct postsynaptic density polypeptide. J Cell Biol. 1978 Oct;79(1):173–183. doi: 10.1083/jcb.79.1.173. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kuhar M. J., Shaskan E. G., Snyder S. H. The subcellular distribution of endogenous and exogenous serotonin in brain tissue: comparison of synaptosomes storing serotonin, norepinephrine, and gamma-aminobutyric acid. J Neurochem. 1971 Mar;18(3):333–343. doi: 10.1111/j.1471-4159.1971.tb11962.x. [DOI] [PubMed] [Google Scholar]
- Landis D. M., Reese T. S. Differences in membrane structure between excitatory and inhibitory synapses in the cerebellar cortex. J Comp Neurol. 1974 May 1;155(1):93–125. doi: 10.1002/cne.901550107. [DOI] [PubMed] [Google Scholar]
- Libet B. Which postsynaptic action of dopamine is mediated by cycle AMP? Life Sci. 1979 Mar 19;24(12):1043–1057. doi: 10.1016/0024-3205(79)90037-7. [DOI] [PubMed] [Google Scholar]
- Liem R. K., Yen S. H., Salomon G. D., Shelanski M. L. Intermediate filaments in nervous tissues. J Cell Biol. 1978 Dec;79(3):637–645. doi: 10.1083/jcb.79.3.637. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MICHAELSON I. A., WHITTAKER V. P. The subcellular localization of 5-hydroxytryptamine in guinea pig brain. Biochem Pharmacol. 1963 Feb;12:203–211. doi: 10.1016/0006-2952(63)90185-0. [DOI] [PubMed] [Google Scholar]
- Matus A. I., NG M., Jones D. H. Immunohistochemical localization of neurofilament antigen in rat cerebellum. J Neurocytol. 1979 Aug;8(4):513–525. doi: 10.1007/BF01214806. [DOI] [PubMed] [Google Scholar]
- Matus A. I., Taff-Jones D. H. Morphology and molecular composition of isolated postsynaptic junctional structures. Proc R Soc Lond B Biol Sci. 1978 Dec 4;203(1151):135–151. doi: 10.1098/rspb.1978.0097. [DOI] [PubMed] [Google Scholar]
- Matus A. I., Walters B. B., Jones D. H. Junctional ultrastructure in isolated synaptic membranes. J Neurocytol. 1975 Jun;4(3):357–367. doi: 10.1007/BF01102118. [DOI] [PubMed] [Google Scholar]
- Matus A. I., Walters B. B., Mughal S. Immunohistochemical demonstration of tubulin associated with microtubules and synaptic junctions in mammalian brain. J Neurocytol. 1975 Dec;4(6):733–744. doi: 10.1007/BF01181633. [DOI] [PubMed] [Google Scholar]
- Matus A. I., Walters B. B. Type 1 and 2 synaptic junctions: differences in distribution of concanavalin A binding sites and stability of the junctional adhesion. Brain Res. 1976 May 28;108(2):249–256. doi: 10.1016/0006-8993(76)90184-0. [DOI] [PubMed] [Google Scholar]
- Matus A. I., Walters B. B. Ultrastructure of the synaptic junctional lattice isolated from mammalian brain. J Neurocytol. 1975 Jun;4(3):369–375. doi: 10.1007/BF01102119. [DOI] [PubMed] [Google Scholar]
- Osborne R. H., Duce I. R., Keen P. Amino acids in 'light' and 'heavy' synaptosome fractions from rat olfactory lobes and their release by electrical stimulation. J Neurochem. 1976 Dec;27(6):1483–1488. doi: 10.1111/j.1471-4159.1976.tb02633.x. [DOI] [PubMed] [Google Scholar]
- Peters A., Kaiserman-Abramof I. R. The small pyramidal neuron of the rat cerebral cortex. The synapses upon dendritic spines. Z Zellforsch Mikrosk Anat. 1969 Sep 22;100(4):487–506. doi: 10.1007/BF00344370. [DOI] [PubMed] [Google Scholar]
- Reddington M., Mehl E. Synaptic membrane proteins as substrates for cyclic AMP-stimulated protein phosphorylation in various regions of rat brain. Biochim Biophys Acta. 1979 Aug 7;555(2):230–238. doi: 10.1016/0005-2736(79)90163-9. [DOI] [PubMed] [Google Scholar]
- Rostas J. A., Kelly P. T., Pesin R. H., Cotman C. W. Protein and glycoprotein composition of synaptic junctions prepared from discrete synaptic regions and different species. Brain Res. 1979 May 18;168(1):151–167. doi: 10.1016/0006-8993(79)90133-1. [DOI] [PubMed] [Google Scholar]
- Schulman H., Greengard P. Ca2+-dependent protein phosphorylation system in membranes from various tissues, and its activation by "calcium-dependent regulator". Proc Natl Acad Sci U S A. 1978 Nov;75(11):5432–5436. doi: 10.1073/pnas.75.11.5432. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sobue K., Muramoto Y., Yamazaki R., Kakiuchi S. Distribution in rat tissues of modulator-binding protein of particulate nature. Studies with 3H-modulator protein. FEBS Lett. 1979 Sep 1;105(1):105–109. doi: 10.1016/0014-5793(79)80896-0. [DOI] [PubMed] [Google Scholar]
- Ueda T., Greengard P., Berzins K., Cohen R. S., Blomberg F., Grab D. J., Siekevitz P. Subcellular distribution in cerebral cortex of two proteins phosphorylated by a cAMP-dependent protein kinase. J Cell Biol. 1979 Nov;83(2 Pt 1):308–319. doi: 10.1083/jcb.83.2.308. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Uno I., Ueda T., Greengard P. Adenosine 3':5'-monophosphate-regulated phosphoprotein system of neuronal membranes. II. Solubilization, purification, and some properties of an endogenous adenosine 3':5'-monophosphate-dependent protein kinase. J Biol Chem. 1977 Jul 25;252(14):5164–5174. [PubMed] [Google Scholar]
- Watterson D. M., Harrelson W. G., Jr, Keller P. M., Sharief F., Vanaman T. C. Structural similarities between the Ca2+-dependent regulatory proteins of 3':5'-cyclic nucleotide phosphodiesterase and actomyosin ATPase. J Biol Chem. 1976 Aug 10;251(15):4501–4513. [PubMed] [Google Scholar]
- Wofsey A. R., Kuhar M. J., Snyder S. H. A unique synaptosomal fraction, which accumulates glutamic and aspartic acids, in brain tissue. Proc Natl Acad Sci U S A. 1971 Jun;68(6):1102–1106. doi: 10.1073/pnas.68.6.1102. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wood J. G., Wallace R. W., Whitaker J. N., Cheung W. Y. Immunocytochemical localization of calmodulin and a heat-labile calmodulin-binding protein (CaM-BP80) in basal ganglia of mouse brain. J Cell Biol. 1980 Jan;84(1):66–76. doi: 10.1083/jcb.84.1.66. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yen S. H., Liem R. K., Kelly P. T., Cotman C. W., Shelanski M. L. Membrane linked proteins at CNS synapses. Brain Res. 1977 Aug 19;132(1):172–175. doi: 10.1016/0006-8993(77)90717-x. [DOI] [PubMed] [Google Scholar]