Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1980 Oct 1;87(1):55–64. doi: 10.1083/jcb.87.1.55

Cytoplasmic microtubules and fungal morphogenesis: ultrastructural effects of methyl benzimidazole-2-ylcarbamate determined by freeze- substitution of hyphal tip cells

PMCID: PMC2110702  PMID: 7419600

Abstract

The effects of methyl benzimidazole-2-ylcarbamate (MBC), one of only a few agents that are active against microtubules of fungi, were analyzed at the ultrastructural level in freeze-substituted hyphal tip cells of Fusarium acuminatum. Nontreated and control cells had numerous microtubules throughout. After just 10 min of exposure to MBC, almost no cytoplasmic microtubules were present, except near spindle pole bodies. After 45 min of exposure to MBC, no microtubules were present in hyphal tip cells, but they were present in the relatively quiescent subapical cells. These observations suggested that there are different rates of turnover for cytoplasmic microtubules in apical and subapical cells and for microtubules near spindle pole bodies and that MBC acts by inhibiting microtubules assembly. A statistical analysis of the distribution of intracytoplasmic vesicles in thick sections of cells treated with MBC, D2O or MBC + D2O was obtained by use of a high- voltage electron microscope. More than 50% of the vesicles in the apical 30 micrometers of control cells were found to lie within 2 micrometers of the tip cell apex. MBC treatment caused this vesicle distribution to become uniform, resulting in a substantial increase in the number of vesicles in subapical regions. The reduction in the number of cytoplasmic microtubules, induced by MBC, apparently inhibited intracellular transport of these vesicles and rendered random the longitudinal orientation of mitochondria. In most cases, D2O appeared capable of preventing these MBC-effects through stabilization of microtubules. These observations support the "vesicle hypothesis" of tip growth and establish a transport role for cytoplasmic microtubules in fungal morphogenesis.

Full Text

The Full Text of this article is available as a PDF (1.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen R. D. Evidence for firm linkages between microtubules and membrane-bounded vesicles. J Cell Biol. 1975 Feb;64(2):497–503. doi: 10.1083/jcb.64.2.497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baum P., Thorner J., Honig L. Identification of tubulin from the yeast Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1978 Oct;75(10):4962–4966. doi: 10.1073/pnas.75.10.4962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Byers B., Goetsch L. Behavior of spindles and spindle plaques in the cell cycle and conjugation of Saccharomyces cerevisiae. J Bacteriol. 1975 Oct;124(1):511–523. doi: 10.1128/jb.124.1.511-523.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Byers B., Shriver K., Goetsch L. The role of spindle pole bodies and modified microtubule ends in the initiation of microtubule assembly in Saccharomyces cerevisiae. J Cell Sci. 1978 Apr;30:331–352. doi: 10.1242/jcs.30.1.331. [DOI] [PubMed] [Google Scholar]
  5. Caron J. M., Berlin R. D. Interaction of microtubule proteins with phospholipid vesicles. J Cell Biol. 1979 Jun;81(3):665–671. doi: 10.1083/jcb.81.3.665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chaldakov G. N., Nikolov S., Vancov V. Fine morphological aspects of the secretory process in arterial smooth muscle cells. II. Role of microtubules. Acta Morphol Acad Sci Hung. 1977;25(2-3):167–174. [PubMed] [Google Scholar]
  7. Davidse L. C., Flach W. Differential binding of methyl benzimidazol-2-yl carbamate to fungal tubulin as a mechanism of resistance to this antimitotic agent in mutant strains of Aspergillus nidulans. J Cell Biol. 1977 Jan;72(1):174–193. doi: 10.1083/jcb.72.1.174. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Eichhorn J. H., Peterkofsky B. Local anesthetic-induced inhibition of collagen secretion in cultured cells under conditions where microtubules are not depolymerized by these agents. J Cell Biol. 1979 Apr;81(1):26–42. doi: 10.1083/jcb.81.1.26. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Flaumenhaft E., Bose S., Crespi H. L., Katz J. J. Deuterium isotope effects in cytology. Int Rev Cytol. 1965;18:313–361. doi: 10.1016/s0074-7696(08)60557-4. [DOI] [PubMed] [Google Scholar]
  10. Gray E. G. Microtubules in synapses of the retina. J Neurocytol. 1976 Jun;5(3):361–370. doi: 10.1007/BF01175121. [DOI] [PubMed] [Google Scholar]
  11. Heath I. B., Heath M. C. Microtubules and organelle movements in the rust fungus Uromyces phaseoli var. vignae. Cytobiologie. 1978 Apr;16(3):393–411. [PubMed] [Google Scholar]
  12. Heggeness M. H., Simon M., Singer S. J. Association of mitochondria with microtubules in cultured cells. Proc Natl Acad Sci U S A. 1978 Aug;75(8):3863–3866. doi: 10.1073/pnas.75.8.3863. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hoffstein S., Goldstein I. M., Weissmann G. Role of microtubule assembly in lysosomal enzyme secretion from human polymorphonuclear leukocytes. A reevaluation. J Cell Biol. 1977 Apr;73(1):242–256. doi: 10.1083/jcb.73.1.242. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Howard R. J., Aist J. R. Effects of MBC on hyphal tip organization, growth, and mitosis of Fusarium acuminatum, and their antagonism by D2O. Protoplasma. 1977;92(3-4):195–210. doi: 10.1007/BF01279458. [DOI] [PubMed] [Google Scholar]
  15. Howard R. J., Aist J. R. Hyphal tip cell ultrastructure of the fungus Fusarium: improved preservation by freeze-substitution. J Ultrastruct Res. 1979 Mar;66(3):224–234. doi: 10.1016/s0022-5320(79)90120-5. [DOI] [PubMed] [Google Scholar]
  16. Hyams J. S., Borisy G. G. Nucleation of microtubules in vitro by isolated spindle pole bodies of the yeast Saccharomyces cerevisiae. J Cell Biol. 1978 Aug;78(2):401–414. doi: 10.1083/jcb.78.2.401. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hyams J. S., Stebbings H. The formation and breakdown of nutritive tubes--massive microtubular organelles associated with cytoplasmic transport. J Ultrastruct Res. 1979 Jul;68(1):46–57. doi: 10.1016/s0022-5320(79)90141-2. [DOI] [PubMed] [Google Scholar]
  18. Knudson C. M., Stemberger B. H., Patton S. Effects of colchicine on ultrastructure of the lactating mammary cell: membrane involvement and stress on the Golgi apparatus. Cell Tissue Res. 1978 Dec 14;195(1):169–181. doi: 10.1007/BF00233684. [DOI] [PubMed] [Google Scholar]
  19. Künkel W., Hädrich H. Ultrastrukturelle Untersuchungen zur antimitotischen Aktivität von Methylbenzimidazol-2-ylcarbamat (MBC) und seinen Einfluss auf die Replikation des Kern-assoziierten Organells ("centriolar plaque", "MOTC", "KCE") bei Aspergillus nidulans. Protoplasma. 1977;92(3-4):311–323. doi: 10.1007/BF01279467. [DOI] [PubMed] [Google Scholar]
  20. McClure W. K., Park D., Robinson P. M. Apical organization in the somatic hyphae of fungi. J Gen Microbiol. 1968 Feb;50(2):177–182. doi: 10.1099/00221287-50-2-177. [DOI] [PubMed] [Google Scholar]
  21. Middaugh C. R., Litman G. W. Effect of D2O on the temperature-dependent solubility of cryoglobulin and noncryoglobulin IgM. FEBS Lett. 1977 Jul 1;79(1):200–202. doi: 10.1016/0014-5793(77)80383-9. [DOI] [PubMed] [Google Scholar]
  22. Mollenhauer H. H. Distribution of microtubules in the golgi apparatus of Euglena gracilis. J Cell Sci. 1974 Jun;15(1):89–97. doi: 10.1242/jcs.15.1.89. [DOI] [PubMed] [Google Scholar]
  23. Morris N. R., Lai M. H., Oakley C. E. Identification of a gene for alpha-tubulin in Aspergillus nidulans. Cell. 1979 Feb;16(2):437–442. doi: 10.1016/0092-8674(79)90019-9. [DOI] [PubMed] [Google Scholar]
  24. Raine C. S., Ghetti B., Shelanski M. L. On the association between microtubules and mitochondria within axons. Brain Res. 1971 Nov;34(2):389–393. doi: 10.1016/0006-8993(71)90293-9. [DOI] [PubMed] [Google Scholar]
  25. Reaven E. P., Reaven G. M. Distribution and content of microtubules in relation to the transport of lipid. An ultrastructural quantitative study of the absorptive cell of the small intestine. J Cell Biol. 1977 Nov;75(2 Pt 1):559–572. doi: 10.1083/jcb.75.2.559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Sasaki S., Tashiro Y. Studies on the posterior silk gland of the silkworm Bombyx mori. VI. Distribution of microtubules in the posterior silk gland cells. J Cell Biol. 1976 Nov;71(2):565–574. doi: 10.1083/jcb.71.2.565. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Smith D. S., Järlfors U., Cameron B. F. Morphological evidence for the participation of microtubules in axonal transport. Ann N Y Acad Sci. 1975 Jun 30;253:472–506. doi: 10.1111/j.1749-6632.1975.tb19223.x. [DOI] [PubMed] [Google Scholar]
  28. Thyberg J., Moskalewski S., Friberg U. Effects of antimicrotubular agents on the fine structure of the Golgi complex in embryonic chick osteoblasts. Cell Tissue Res. 1978 Oct 17;193(2):247–257. doi: 10.1007/BF00209038. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES