Abstract
The marginal band (MB) of nucleated erythrocytes is composed of a bundle of microtubules that encircles the cell immediately beneath the plasma membrane. When cells are lysed in buffer containing Triton X-100 the MB microtubules remain intact, and the nucleus remains suspended at the cell center by a filamentous network called the trans-MB material that connects the nucleus to the peripheral MB. When these lysed cells are prepared for indirect immunofluorescence by use of an antibody to chick brain microtubule-associated protein 2 (MAP 2), intense staining of the MB results; no staining is evident in the areas occupied by the nucleus or the trans-MB material. Controls demonstrate that the staining is specific, because no staining occurs with fluorescent goat antirabbit serum alone or when nonimmune serum is used as the first antibody. Furthermore, the fluorescence of the MB is not affected by pretreatment of the immune serum with purified tubulin, but staining is prevented by pretreatment of the immune serum with purified MAP 2. To determine which protein component of the MB was responsible for the positive immunofluorescence results, 125I-protein A staining was used after the protein components of the isolated cytoskeleton had been resolved by SDS-polyacrylamide gels. Controls showed that the antiserum could react on SDS gels with MAP 2 from purified chick brain microtubules. The results with the cytoskeletal proteins demonstrated that the antiserum reacted only with a high molecular weight protein having a molecular weight similar, but not identical, to that of chick brain MAP 2. Thus, it is concluded that a protein with antigenic characteristics similar to those of chick brain MAP 2 is a component of the MB. The results are discussed in terms of the possible function of MAP 2 in the MB.
Full Text
The Full Text of this article is available as a PDF (1.1 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adair W. S., Jurivich D., Goodenough U. W. Localization of cellular antigens in sodium dodecyl sulfate-polyacrylamide gels. J Cell Biol. 1978 Oct;79(1):281–285. doi: 10.1083/jcb.79.1.281. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Amos L. A. Arrangement of high molecular weight associated proteins on purified mammalian brain microtubules. J Cell Biol. 1977 Mar;72(3):642–654. doi: 10.1083/jcb.72.3.642. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Beam K. G., Alper S. L., Palade G. E., Greengard P. Hormonally regulated phosphoprotein of turkey erythrocytes: localization to plasma membrane. J Cell Biol. 1979 Oct;83(1):1–15. doi: 10.1083/jcb.83.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bertolini B., Monaco G. The microtubule marginal band of the newt erythrocyte. Observations on the isolated band. J Ultrastruct Res. 1976 Jan;54(1):59–67. doi: 10.1016/s0022-5320(76)80008-1. [DOI] [PubMed] [Google Scholar]
- Bhattacharyya B., Volff J. Membrane-bound tubulin in brain and thyroid tissue. J Biol Chem. 1975 Oct 10;250(19):7639–7646. [PubMed] [Google Scholar]
- Borisy G. G., Marcum J. M., Olmsted J. B., Murphy D. B., Johnson K. A. Purification of tubulin and associated high molecular weight proteins from porcine brain and characterization of microtubule assembly in vitro. Ann N Y Acad Sci. 1975 Jun 30;253:107–132. doi: 10.1111/j.1749-6632.1975.tb19196.x. [DOI] [PubMed] [Google Scholar]
- Cohen W. D. Observations of the marginal band system of nucleated erythrocytes. J Cell Biol. 1978 Jul;78(1):260–273. doi: 10.1083/jcb.78.1.260. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Connolly J. A., Kalnins V. I., Cleveland D. W., Kirschner M. W. Intracellular localization of the high molecular weight microtubule accessory protein by indirect immunofluorescence. J Cell Biol. 1978 Mar;76(3):781–786. doi: 10.1083/jcb.76.3.781. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dentler W. L., Granett S., Rosenbaum J. L. Ultrastructural localization of the high molecular weight proteins associated with in vitro-assembled brain microtubules. J Cell Biol. 1975 Apr;65(1):237–241. doi: 10.1083/jcb.65.1.237. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Engelborghs Y., De Maeyer L. C., Overbergh N. A kinetic analysis of the assembly of microtubules in vitro. FEBS Lett. 1977 Aug 1;80(1):81–85. doi: 10.1016/0014-5793(77)80411-0. [DOI] [PubMed] [Google Scholar]
- Fairbanks G., Steck T. L., Wallach D. F. Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane. Biochemistry. 1971 Jun 22;10(13):2606–2617. doi: 10.1021/bi00789a030. [DOI] [PubMed] [Google Scholar]
- GREENWOOD F. C., HUNTER W. M., GLOVER J. S. THE PREPARATION OF I-131-LABELLED HUMAN GROWTH HORMONE OF HIGH SPECIFIC RADIOACTIVITY. Biochem J. 1963 Oct;89:114–123. doi: 10.1042/bj0890114. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Griffith L. M., Pollard T. D. Evidence for actin filament-microtubule interaction mediated by microtubule-associated proteins. J Cell Biol. 1978 Sep;78(3):958–965. doi: 10.1083/jcb.78.3.958. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Haga T., Kurokawa M. Microtubule formation from two components separated by gel filtration of a tubulin preparation. Biochim Biophys Acta. 1975 Jun 12;392(2):335–345. doi: 10.1016/0304-4165(75)90015-x. [DOI] [PubMed] [Google Scholar]
- Jackson R. C. The exterior surface of the chicken erythrocyte. J Biol Chem. 1975 Jan 25;250(2):617–622. [PubMed] [Google Scholar]
- Kim H., Binder L. I., Rosenbaum J. L. The periodic association of MAP2 with brain microtubules in vitro. J Cell Biol. 1979 Feb;80(2):266–276. doi: 10.1083/jcb.80.2.266. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kronvall G., Seal U. S., Finstad J., Williams R. C., Jr Phylogenetic insight into evolution of mammalian Fc fragment of gamma G globulin using staphylococcal protein A. J Immunol. 1970 Jan;104(1):140–147. [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lockwood A. H. Tubulin assembly protein: immunochemical and immunofluorescent studies on its function and distribution in microtubules and cultured cells. Cell. 1978 Apr;13(4):613–627. doi: 10.1016/0092-8674(78)90212-x. [DOI] [PubMed] [Google Scholar]
- Matsudaira P. T., Burgess D. R. SDS microslab linear gradient polyacrylamide gel electrophoresis. Anal Biochem. 1978 Jul 1;87(2):386–396. doi: 10.1016/0003-2697(78)90688-7. [DOI] [PubMed] [Google Scholar]
- Murphy D. B., Borisy G. G. Association of high-molecular-weight proteins with microtubules and their role in microtubule assembly in vitro. Proc Natl Acad Sci U S A. 1975 Jul;72(7):2696–2700. doi: 10.1073/pnas.72.7.2696. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Murphy D. B., Johnson K. A., Borisy G. G. Role of tubulin-associated proteins in microtubule nucleation and elongation. J Mol Biol. 1977 Nov 25;117(1):33–52. doi: 10.1016/0022-2836(77)90021-3. [DOI] [PubMed] [Google Scholar]
- Ross J., Olmsted J. B., Rosenbaum J. L. The ultrastructure of mouse neuroblastoma cells in tissue culture. Tissue Cell. 1975;7(1):107–135. doi: 10.1016/s0040-8166(75)80010-3. [DOI] [PubMed] [Google Scholar]
- Sherline P., Schiavone K. Immunofluorescence localization of proteins of high molecular weight along intracellular microtubules. Science. 1977 Dec 9;198(4321):1038–1040. doi: 10.1126/science.337490. [DOI] [PubMed] [Google Scholar]
- Sheterline P. Localisation of the major high-molecular-weight protein on microtubules in vitro and in cultured cells. Exp Cell Res. 1978 Sep;115(2):460–464. doi: 10.1016/0014-4827(78)90310-5. [DOI] [PubMed] [Google Scholar]
- Sloboda R. D., Dentler W. L., Rosenbaum J. L. Microtubule-associated proteins and the stimulation of tubulin assembly in vitro. Biochemistry. 1976 Oct 5;15(20):4497–4505. doi: 10.1021/bi00665a026. [DOI] [PubMed] [Google Scholar]
- Sloboda R. D., Rosenbaum J. L. Decoration and stabilization of intact, smooth-walled microtubules with microtubule-associated proteins. Biochemistry. 1979 Jan 9;18(1):48–55. doi: 10.1021/bi00568a008. [DOI] [PubMed] [Google Scholar]
- Sloboda R. D., Rudolph S. A., Rosenbaum J. L., Greengard P. Cyclic AMP-dependent endogenous phosphorylation of a microtubule-associated protein. Proc Natl Acad Sci U S A. 1975 Jan;72(1):177–181. doi: 10.1073/pnas.72.1.177. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stephens R. E. Major membrane protein differences in cilia and flagella: evidence for a membrane-associated tubulin. Biochemistry. 1977 May 17;16(10):2047–2058. doi: 10.1021/bi00629a001. [DOI] [PubMed] [Google Scholar]
- Vallee R. B., Borisy G. G. Removal of the projections from cytoplasmic microtubules in vitro by digestion with trypsin. J Biol Chem. 1977 Jan 10;252(1):377–382. [PubMed] [Google Scholar]
- Weingarten M. D., Lockwood A. H., Hwo S. Y., Kirschner M. W. A protein factor essential for microtubule assembly. Proc Natl Acad Sci U S A. 1975 May;72(5):1858–1862. doi: 10.1073/pnas.72.5.1858. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zenner H. P., Pfeuffer T. Microtubular proteins in pigeon erythrocyte membranes. Eur J Biochem. 1976 Dec;71(1):177–184. doi: 10.1111/j.1432-1033.1976.tb11104.x. [DOI] [PubMed] [Google Scholar]