Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1980 Oct 1;87(1):237–247. doi: 10.1083/jcb.87.1.237

Localization of cytoplasmic and skeletal myosins in developing muscle cells by double-label immunofluorescence

PMCID: PMC2110710  PMID: 6998989

Abstract

Antibodies to a cytoplasmic myosin, rat lymphoma myosin, and to rat skeletal myosin were prepared in rabbits and shown to be specific for their corresponding antigens. The two antibodies did not cross-react. The skeletal myosin antibody was directly labeled with rhodamine, and the cytoplasmic myosin antibody was detected by indirect immunofluorescence with fluorescein-labeled goat anti-rabbit antibody. The two antibodies were used to examine developing rat muscle cultures for the presence and location of the antigens. The antibody to cytoplasmic myosin reacted with multinucleated myotubes and with all the mononucleated cells in the culture. The antibody to skeletal myosin reacted with myotubes and with a small fraction of the mononucleated cells. In the myotubes, the cytoplasmic myosin appeared to be localized primarily in two structures: fine stress fibers, often visible also by phase microscopy and present predominantly in the ends of the cells, and in a submembranous rim all along the cell's border. In addition, a diffuse fluorescence within the cells was observed. The skeletal myosin was localized in the central part of the myotubes in sarcomeres or in fibers without periodicities and was excluded from the ends of the myotubes. When the same cells were doubly stained with the two antibodies, the complementary distribution of the two isozymes was very clear. There was also a narrow region of overlap of staining, with cytoplasmic myosin present in some stress fibers that appeared to be continuous with fibrous elements containing skeletal myosin. Myotubes that rounded up with cytochalasin B or with trypsin displayed a diffuse distribution of both isozymes. When these cells were allowed to respread into extended configurations, the location of the two myosins were essentially the same as in untreated cells. The ability of myotubes to adhere to the surface and to move in culture may be related to the presence of cytoplasmic myosin. Our results show that in myotubes and myoblasts the two isozymes differ sufficiently to be localized in distinct regions of the cell and to be sorted out into different structures, even after the cytoplasmic contents have been reshuffled. The cell can, by some unknown mechanism, distinguish the two myosins.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bourguignon L. Y., Singer S. J. Transmembrane interactions and the mechanism of capping of surface receptors by their specific ligands. Proc Natl Acad Sci U S A. 1977 Nov;74(11):5031–5035. doi: 10.1073/pnas.74.11.5031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. CAPERS C. R. Multinucleation of skeletal muscle in vitro. J Biophys Biochem Cytol. 1960 Jun;7:559–566. doi: 10.1083/jcb.7.3.559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. COOPER W. G., KONIGSBERG I. R. Dynamics of myogenesis in vitro. Anat Rec. 1961 Jul;140:195–205. doi: 10.1002/ar.1091400305. [DOI] [PubMed] [Google Scholar]
  4. Cebra J. J., Goldstein G. Chromatographic purification of tetramethylrhodamine-immune globulin conjugates and their use in the cellular localization of rabbit gamma-globulin polypeptide chains. J Immunol. 1965 Aug;95(2):230–245. [PubMed] [Google Scholar]
  5. Condeelis J. S., Taylor D. L. The contractile basis of amoeboid movement. V. The control of gelation, solation, and contraction in extracts from Dictyostelium discoideum. J Cell Biol. 1977 Sep;74(3):901–927. doi: 10.1083/jcb.74.3.901. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fischman D. A. The synthesis and assembly of myofibrils in embryonic muscle. Curr Top Dev Biol. 1970;5:235–280. doi: 10.1016/s0070-2153(08)60057-5. [DOI] [PubMed] [Google Scholar]
  7. Friedlander M., Beyer E. C., Fischman D. A. Muscle development in vitro following X irradiation. Dev Biol. 1978 Oct;66(2):457–469. doi: 10.1016/0012-1606(78)90251-8. [DOI] [PubMed] [Google Scholar]
  8. Fujiwara K., Pollard T. D. Fluorescent antibody localization of myosin in the cytoplasm, cleavage furrow, and mitotic spindle of human cells. J Cell Biol. 1976 Dec;71(3):848–875. doi: 10.1083/jcb.71.3.848. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gauthier G. F., Lowey S. Polymorphism of myosin among skeletal muscle fiber types. J Cell Biol. 1977 Sep;74(3):760–779. doi: 10.1083/jcb.74.3.760. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hartwig J. H., Stossel T. P. Isolation and properties of actin, myosin, and a new actinbinding protein in rabbit alveolar macrophages. J Biol Chem. 1975 Jul 25;250(14):5696–5705. [PubMed] [Google Scholar]
  11. Ip W., Fischman D. A. High resolution scanning electron microscopy of isolated and in situ cytoskeletal elements. J Cell Biol. 1979 Oct;83(1):249–254. doi: 10.1083/jcb.83.1.249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Ishikawa H., Bischoff R., Holtzer H. Formation of arrowhead complexes with heavy meromyosin in a variety of cell types. J Cell Biol. 1969 Nov;43(2):312–328. [PMC free article] [PubMed] [Google Scholar]
  13. Kessler S. W. Cell membrane antigen isolation with the staphylococcal protein A-antibody adsorbent. J Immunol. 1976 Nov;117(5 Pt 1):1482–1490. [PubMed] [Google Scholar]
  14. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  15. Mabuchi I., Okuno M. The effect of myosin antibody on the division of starfish blastomeres. J Cell Biol. 1977 Jul;74(1):251–263. doi: 10.1083/jcb.74.1.251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Mackenzie J. M., Jr, Schachat F., Epstein H. F. Immunocytochemical localization of two myosins within the same muslce cells in Caenorhabditis elegans. Cell. 1978 Oct;15(2):413–419. doi: 10.1016/0092-8674(78)90010-7. [DOI] [PubMed] [Google Scholar]
  17. Nachmias V. T. Properties of Physarum myosin purified by a potassium iodide procedure. J Cell Biol. 1974 Jul;62(1):54–65. doi: 10.1083/jcb.62.1.54. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Offer G., Moos C., Starr R. A new protein of the thick filaments of vertebrate skeletal myofibrils. Extractions, purification and characterization. J Mol Biol. 1973 Mar 15;74(4):653–676. doi: 10.1016/0022-2836(73)90055-7. [DOI] [PubMed] [Google Scholar]
  19. Pepe F. A., Drucker B. The myosin filament. III. C-protein. J Mol Biol. 1975 Dec 25;99(4):609–617. doi: 10.1016/s0022-2836(75)80175-6. [DOI] [PubMed] [Google Scholar]
  20. Pollack R., Osborn M., Weber K. Patterns of organization of actin and myosin in normal and transformed cultured cells. Proc Natl Acad Sci U S A. 1975 Mar;72(3):994–998. doi: 10.1073/pnas.72.3.994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Pollard T. D., Weihing R. R. Actin and myosin and cell movement. CRC Crit Rev Biochem. 1974 Jan;2(1):1–65. doi: 10.3109/10409237409105443. [DOI] [PubMed] [Google Scholar]
  22. Rubinstein N., Chi J., Holtzer H. Coordinated synthesis and degradation of actin and myosin in a variety of myogenic and non-myogenic cells. Exp Cell Res. 1976 Feb;97(2):387–393. doi: 10.1016/0014-4827(76)90630-3. [DOI] [PubMed] [Google Scholar]
  23. Rubinstein N., Mabuchi K., Pepe F., Salmons S., Gergely J., Sreter F. Use of type-specific antimyosins to demonstrate the transformation of individual fibers in chronically stimulated rabbit fast muscles. J Cell Biol. 1978 Oct;79(1):252–261. doi: 10.1083/jcb.79.1.252. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. STOCKDALE F. E., HOLTZER H. DNA synthesis and myogenesis. Exp Cell Res. 1961 Sep;24:508–520. doi: 10.1016/0014-4827(61)90450-5. [DOI] [PubMed] [Google Scholar]
  25. Sanger J. W., Holtzer S., Holtzer H. Effects of cytochalasin B on muscle cells in tissue culture. Nat New Biol. 1971 Jan 27;229(4):121–123. doi: 10.1038/newbio229121a0. [DOI] [PubMed] [Google Scholar]
  26. Sanger J. W. The use of cytochalasin B to distinguish myoblasts from fibroblasts in cultures of developing chick striated muscle. Proc Natl Acad Sci U S A. 1974 Sep;71(9):3621–3625. doi: 10.1073/pnas.71.9.3621. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Sartore S., Pierobon-Bormioli S., Schiaffino S. Immunohistochemical evidence for myosin polymorphism in the chicken heart. Nature. 1978 Jul 6;274(5666):82–83. doi: 10.1038/274082a0. [DOI] [PubMed] [Google Scholar]
  28. Schreiner G. F., Fujiwara K., Pollard T. D., Unanue E. R. Redistribution of myosin accompanying capping of surface Ig. J Exp Med. 1977 May 1;145(5):1393–1398. doi: 10.1084/jem.145.5.1393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Taylor D. L., Rhodes J. A., Hammond S. A. The contractile basis of ameboid movement. II. Structure and contractility of motile extracts and plasmalemma-ectoplasm ghosts. J Cell Biol. 1976 Jul;70(1):123–143. doi: 10.1083/jcb.70.1.123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Tuszynski G. P., Damsky C. H., Fuhrer J. P., Warren L. Recovery of concentrated protein samples from sodium dodecyl sulfate-polyacrylamide gels. Anal Biochem. 1977 Nov;83(1):119–129. doi: 10.1016/0003-2697(77)90517-6. [DOI] [PubMed] [Google Scholar]
  31. Willingham M. C., Yamada K. M., Yamada S. S., Pouysségur J., Pastan I. Microfilament bundles and cell shape are related to adhesiveness to substratum and are dissociable from growth control in cultured fibroblasts. Cell. 1977 Mar;10(3):375–380. doi: 10.1016/0092-8674(77)90024-1. [DOI] [PubMed] [Google Scholar]
  32. Zigmond S. H., Otto J. J., Bryan J. Organization of myosin in a submembranous sheath in well-spread human fibroblasts. Exp Cell Res. 1979 Mar 15;119(2):205–219. doi: 10.1016/0014-4827(79)90349-5. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES