Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1980 Oct 1;87(1):197–203. doi: 10.1083/jcb.87.1.197

Axonal growth during regeneration: a quantitative autoradiographic study

PMCID: PMC2110733  PMID: 6158519

Abstract

The intraaxonal distribution of labeled glycoproteins in the regenerating hypoglossal nerve of the rabbit was studied by use of quantitative electron microscope autoradiography. 9 d after nerve crush, glycoproteins were labeled by the administration of [3H]fucose to the medulla. The distribution of transported 3H-labeled glycoproteins was determined 18 h later in segments of the regenerating nerve and in the contralateral, intact nerve. At the regenerating tip, the distribution was determined both in growth cones and in non-growth cone axons, 6 and 18 h after labeling. The distribution within the non- growth cone axons of the tips was quite different at 6 and 18 h. At 6 h, the axolemma region contained < 10% of the radioactivity; at 18 h, it contained virtually all the radioactivity. In contrast, the distribution within the growth cones was similar at both time intervals, with 30% of the radioactivity over the axolemmal region. Additional segments of the regenerating nerve also showed a preferential labeling of the axolemmal region. In the intact nerve, 3H- labeled glycoproteins were uniformly distributed. These results suggest that: (a) in this system the labeled glycoproteins reaching the tip of the regenerating axons are inserted into the axolemma between 6 and 18 h after leaving the neuronal perikaryon; (b) at the times studied, there is a fairly constant ratio between glycoproteins reaching the growth cone through axoplasmic transport and glycoproteins inserted into the growth cone axolemma; (c) the axolemma elongates by continuous insertion of membrane precursors at the growth cone; the growth cone then advances, leaving behind an immature axon with a newly formed axolemma; and (d) glycoproteins are preferentially inserted into the axolemma along the entire regenerating axon.

Full Text

The Full Text of this article is available as a PDF (841.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abe T., Haga T., Kurokawa M. Retrograde axoplasmic transport: its continuation as anterograde transport. FEBS Lett. 1974 Oct 15;47(2):272–275. doi: 10.1016/0014-5793(74)81028-8. [DOI] [PubMed] [Google Scholar]
  2. Bennett G., Di Giamberardino L., Koenig H. L., Droz B. Axonal migration of protein and glycoprotein to nerve endings. II. Radioautographic analysis of the renewal of glycoproteins in nerve endings of chicken ciliary ganglion after intracerebral injection of (3H)fucose and (3H)-glucosamine. Brain Res. 1973 Sep 28;60(1):129–146. doi: 10.1016/0006-8993(73)90853-6. [DOI] [PubMed] [Google Scholar]
  3. Bennett G., Leblond C. P., Haddad A. Migration of glycoprotein from the Golgi apparatus to the surface of various cell types as shown by radioautography after labelled fucose injection into rats. J Cell Biol. 1974 Jan;60(1):258–284. doi: 10.1083/jcb.60.1.258. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bisby M. A. Fast axonal transport of labeled protein in sensory axons during regeneration. Exp Neurol. 1978 Sep 1;61(2):281–300. doi: 10.1016/0014-4886(78)90247-9. [DOI] [PubMed] [Google Scholar]
  5. Bray D. Model for membrane movements in the neural growth cone. Nature. 1973 Jul 13;244(5411):93–96. doi: 10.1038/244093a0. [DOI] [PubMed] [Google Scholar]
  6. Byers M. R. Structural correlates of rapid axonal transport: evidence that microtubules may not be directly involved. Brain Res. 1974 Jul 19;75(1):97–113. doi: 10.1016/0006-8993(74)90773-2. [DOI] [PubMed] [Google Scholar]
  7. CRAGG B. G., THOMAS P. K. Changes in conduction velocity and fibre size proximal to peripheral nerve lesions. J Physiol. 1961 Jul;157:315–327. doi: 10.1113/jphysiol.1961.sp006724. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Carbonetto S., Fambrough D. M. Synthesis, insertion into the plasma membrane, and turnover of alpha-bungarotoxin receptors in chick sympathetic neurons. J Cell Biol. 1979 Jun;81(3):555–569. doi: 10.1083/jcb.81.3.555. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Droz B., Koenig H. L., Biamberardino L. D., Di Giamberardino L. Axonal migration of protein and glycoprotein to nerve endings. I. Radioautographic analysis of the renewal of protein in nerve endings of chicken ciliary ganglion after intracerebral injection of (3H)lysine. Brain Res. 1973 Sep 28;60(1):93–127. doi: 10.1016/0006-8993(73)90852-4. [DOI] [PubMed] [Google Scholar]
  10. Droz B., Rambourg A., Koenig H. L. The smooth endoplasmic reticulum: structure and role in the renewal of axonal membrane and synaptic vesicles by fast axonal transport. Brain Res. 1975 Jul 25;93(1):1–13. doi: 10.1016/0006-8993(75)90282-6. [DOI] [PubMed] [Google Scholar]
  11. Forman D. S., Berenberg R. A. Regeneration of motor axons in the rat sciatic nerve studied by labeling with axonally transported radioactive proteins. Brain Res. 1978 Nov 10;156(2):213–225. doi: 10.1016/0006-8993(78)90504-8. [DOI] [PubMed] [Google Scholar]
  12. Frizell M., McLean W. G., Sjöstrand Retrograde axonal transport of rapidly migrating labelled proteins and glycoproteins in regenerating peripheral nerves. J Neurochem. 1976 Jul;27(1):191–196. doi: 10.1111/j.1471-4159.1976.tb01563.x. [DOI] [PubMed] [Google Scholar]
  13. Frizell M., Sjöstrand J. The axonal transport of (3H)fucose labelled glycoproteins in normal and regenerating peripheral nerves. Brain Res. 1974 Sep 20;78(1):109–123. doi: 10.1016/0006-8993(74)90357-6. [DOI] [PubMed] [Google Scholar]
  14. Frizell M., Sjöstrand J. The axonal transport of slowly migrating (3H)leucine labelled proteins and the regeneration rate in regenerating hypoglossal and vagus nerves of the rabbit. Brain Res. 1974 Dec 6;81(2):267–283. doi: 10.1016/0006-8993(74)90941-x. [DOI] [PubMed] [Google Scholar]
  15. Frizell M., Sjöstrand J. Transport of proteins, glycoproteins and cholinergic enzymes in regenerating hypoglossal neurons. J Neurochem. 1974 May;22(5):845–850. doi: 10.1111/j.1471-4159.1974.tb04303.x. [DOI] [PubMed] [Google Scholar]
  16. Gambetti P., Autilio-Gambetti L. A., Gonatas N. K., Shafer B. Protein synthesis in synaptosomal fractions. Ultrastructural radioautographic study. J Cell Biol. 1972 Mar;52(3):526–535. doi: 10.1083/jcb.52.3.526. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Gambetti P., Autilio-Gambetti L., Shafer B., Pfaff L. D. Quantitative autoradiographic study of labeled RNA in rabbit optic nerve after intraocular injection of (3H)uridine. J Cell Biol. 1973 Dec;59(3):677–684. doi: 10.1083/jcb.59.3.677. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Gambetti P., Ingoglia N. A., Autilio-Gambetti L., Weis P. Distribution of [3H]RNA in goldfish optic tectum following intraocular or intracranial injection of [3H]uridine. Evidence of axonal migration of RNA in regenerating optic fibers. Brain Res. 1978 Oct 13;154(2):285–300. doi: 10.1016/0006-8993(78)90701-1. [DOI] [PubMed] [Google Scholar]
  19. Griffin J. W., Drachman D. B., Price D. L. Fast axonal transport in motor nerve regeneration. J Neurobiol. 1976 Jul;7(4):355–370. doi: 10.1002/neu.480070407. [DOI] [PubMed] [Google Scholar]
  20. Hasty D. L., Hay E. D. Freeze-fracture studies of the developing cell surface. II. Particle-free membrane blisters on glutaraldehyde-fixed corneal fibroblasts are artefacts. J Cell Biol. 1978 Sep;78(3):756–768. doi: 10.1083/jcb.78.3.756. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kreutzberg G. W., Schubert P. Changes in axonal flow during regeneration of mammalian motor nerves. Acta Neuropathol. 1971;5(Suppl):70–75. doi: 10.1007/978-3-642-47449-1_9. [DOI] [PubMed] [Google Scholar]
  22. Lentz T. L. Distribution of leucine- 3 H during axoplasmic transport within regenerating neurons as determined by electron-microscope radioautography. J Cell Biol. 1972 Mar;52(3):719–732. doi: 10.1083/jcb.52.3.719. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Pfenninger K. H., Bunge R. P. Freeze-fracturing of nerve growth cones and young fibers. A study of developing plasma membrane. J Cell Biol. 1974 Oct;63(1):180–196. doi: 10.1083/jcb.63.1.180. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Salpeter M. M., Bachmann L., Salpeter E. E. Resolution in electron microscope radioautography. J Cell Biol. 1969 Apr;41(1):1–32. doi: 10.1083/jcb.41.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Salpeter M. M., Szabo M. Sensitivity in electron microscope autoradiography. I. The effect of radiation dose. J Histochem Cytochem. 1972 Jun;20(6):425–434. doi: 10.1177/20.6.425. [DOI] [PubMed] [Google Scholar]
  26. Schwartz J. H. Axonal transport: components, mechanisms, and specificity. Annu Rev Neurosci. 1979;2:467–504. doi: 10.1146/annurev.ne.02.030179.002343. [DOI] [PubMed] [Google Scholar]
  27. Thompson E. B., Schwartz J. H., Kandel E. R. A radioautographic analysis in the light and electron microscope of identified Aplysia neurons and their processes after intrasomatic injection of L-(3H)fucose. Brain Res. 1976 Aug 13;112(2):251–281. doi: 10.1016/0006-8993(76)90283-3. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES