Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1980 Nov 1;87(2):488–497. doi: 10.1083/jcb.87.2.488

Structural diversity of occluding junctions in the low-resistance chloride-secreting opercular epithelium of seawater-adapted killifish (Fundulus heteroclitus)

PMCID: PMC2110740  PMID: 7430253

Abstract

The structural features of the chloride-secreting opercular epithelium of seawater-adapted killifish (Fundulus heteroclitus) were examined by thin-section and freeze-fracture electron microscopy, with particular emphasis on the morphological appearance of occluding junctions. This epithelium is a flat sheet consisting predominantly of groups of mitochondriarich chloride cells with their apices associated to form apical crypts. These multicellular groups are interspersed in an otherwise continuous pavement cell epithelial lining. The epithelium may be mounted in Ussing-type chambers, which allow ready access to mucosal and serosal solutions and measurement of electrocal properties. The mean short-circuit current, potential difference (mucosal-side negative), and DC resistance for 19 opercular epithelia were, respectively, 120.0 +/- 18.2 microA/cm2, 12.3 +/- 1.7 mV, and 132.5 +/- 26.4 omega cm2. Short-circuit current, a direct measure of Cl- transport, was inhibited by ouabain (5 micron) when introduced on the serosal side, but not when applied to the mucosal side alone. Autoradiographic analysis of [3H]-ouabain-binding sites demonstrated that Na+,K+-ATPase was localized exclusively to basolateral membranes of chloride cells; pavement cells were unlabeled. Occluding junctions between adjacent chloride cells were remarkably shallow (20-25 nm), consisting of two parallel and juxtaposed junctional strands. Junctional interactions between pavement cells or between pavement cells and chloride cells were considerably more elaborate, extending 0.3-0.5 micron in depth and consisting of five or more interlocking junctional strands. Chloride cells at the lateral margins of crypts make simple junctional contacts with neighboring chloride cells and extensive junctions with contiguous pavement cells. Accordingly, in this heterogeneous epithelium, only junctions between Na+,K+-ATPase- rich chloride cells are shallow. Apical crypts may serve, therefore, as focal areas of high cation conductivity across the junctional route. This view is consistent with the electrical data showing that transmural resistance across the opercular eptihelium is low, and with recent studies demonstrating that transepithelial Na+ fluxes are passive. The simplicity of these junctions parallels that described recently for secretory cells of avian salt gland (Riddle and Ernst, 1979, J. Membr. Biol., 45:21-35) and elasmobranch rectal gland (Ernst et al., 1979, J. Cell Biol., 83:(2, Pt. 2):83 a[Abstr.]) and lends morphological support to the concept that paracellular ion permeation plays a central role in ouabain-sensitive transepithelial NaCl secretion.

Full Text

The Full Text of this article is available as a PDF (1.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bereiter-Hahn J. Dimethylaminostyrylmethylpyridiniumiodine (daspmi) as a fluorescent probe for mitochondria in situ. Biochim Biophys Acta. 1976 Jan 15;423(1):1–14. doi: 10.1016/0005-2728(76)90096-7. [DOI] [PubMed] [Google Scholar]
  2. Claude P., Goodenough D. A. Fracture faces of zonulae occludentes from "tight" and "leaky" epithelia. J Cell Biol. 1973 Aug;58(2):390–400. doi: 10.1083/jcb.58.2.390. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Claude P. Morphological factors influencing transepithelial permeability: a model for the resistance of the zonula occludens. J Membr Biol. 1978 Mar 10;39(2-3):219–232. doi: 10.1007/BF01870332. [DOI] [PubMed] [Google Scholar]
  4. Degnan K. J., Karnaky K. J., Jr, Zadunaisky J. A. Active chloride transport in the in vitro opercular skin of a teleost (Fundulus heteroclitus), a gill-like epithelium rich in chloride cells. J Physiol. 1977 Sep;271(1):155–191. doi: 10.1113/jphysiol.1977.sp011995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Degnan K. J., Zadunaisky J. A. Open-circuit sodium and chloride fluxes across isolated opercular epithelia from the teleost Fundulus heteroclitus. J Physiol. 1979 Sep;294:483–495. doi: 10.1113/jphysiol.1979.sp012942. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. DiBona D. R., Mills J. W. Distribution of Na+-pump sites in transporting epithelia. Fed Proc. 1979 Feb;38(2):134–143. [PubMed] [Google Scholar]
  7. Diamond J. M. Channels in epithelial cell membranes and junctions. Fed Proc. 1978 Oct;37(12):2639–2643. [PubMed] [Google Scholar]
  8. Diamond J. M. Osmotic water flow in leaky epithelia. J Membr Biol. 1979 Dec 31;51(3-4):195–216. doi: 10.1007/BF01869084. [DOI] [PubMed] [Google Scholar]
  9. Diamond J. M. Tight and leaky junctions of epithelia: a perspective on kisses in the dark. Fed Proc. 1974 Nov;33(11):2220–2224. [PubMed] [Google Scholar]
  10. Ellis R. A., Goertemiller C. C., Jr, Stetson D. L. Significance of extensive 'leaky' cell junctions in the avian salt gland. Nature. 1977 Aug 11;268(5620):555–556. doi: 10.1038/268555a0. [DOI] [PubMed] [Google Scholar]
  11. Ernst S. A., Mills J. W. Autoradiographic localization of tritiated ouabain-sensitive sodium pump sites in ion transporting epithelia. J Histochem Cytochem. 1980 Jan;28(1):72–77. doi: 10.1177/28.1.6243324. [DOI] [PubMed] [Google Scholar]
  12. Eveloff J., Kinne R., Kinne-Saffran E., Murer H., Silva P., Epstein F. H., Stoff J., Kinter W. B. Coupled sodium and chloride transport into plasma membrane vesicles prepared from dogfish rectal gland. Pflugers Arch. 1978 Dec 28;378(2):87–92. doi: 10.1007/BF00584439. [DOI] [PubMed] [Google Scholar]
  13. Frederiksen O., Møllgård K., Rostgaard J. Lack of correlation between transepithelial transport capacity and paracellular pathway ultrastructure in Alcian blue-treated rabbit gallbladders. J Cell Biol. 1979 Nov;83(2 Pt 1):383–393. doi: 10.1083/jcb.83.2.383. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Frizzell R. A., Field M., Schultz S. G. Sodium-coupled chloride transport by epithelial tissues. Am J Physiol. 1979 Jan;236(1):F1–F8. doi: 10.1152/ajprenal.1979.236.1.F1. [DOI] [PubMed] [Google Scholar]
  15. Frizzell R. A., Schultz S. G. Ionic conductances of extracellular shunt pathway in rabbit ileum. Influence of shunt on transmural sodium transport and electrical potential differences. J Gen Physiol. 1972 Mar;59(3):318–346. doi: 10.1085/jgp.59.3.318. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Frömter E., Diamond J. Route of passive ion permeation in epithelia. Nat New Biol. 1972 Jan 5;235(53):9–13. doi: 10.1038/newbio235009a0. [DOI] [PubMed] [Google Scholar]
  17. Frömter E., Rumrich G., Ullrich K. J. Phenomenologic description of Na+, Cl- and HCO-3 absorption from proximal tubules of rat kidney. Pflugers Arch. 1973 Oct 22;343(3):189–220. doi: 10.1007/BF00586045. [DOI] [PubMed] [Google Scholar]
  18. Frömter E. The route of passive ion movement through the epithelium of Necturus gallbladder. J Membr Biol. 1972;8(3):259–301. doi: 10.1007/BF01868106. [DOI] [PubMed] [Google Scholar]
  19. Helman S. I., Grantham J. J., Burg M. B. Effect of vasopressin on electrical resistance of renal cortical collecting tubules. Am J Physiol. 1971 Jun;220(6):1825–1832. doi: 10.1152/ajplegacy.1971.220.6.1825. [DOI] [PubMed] [Google Scholar]
  20. Hootman S. R., Philpott C. W. Ultracytochemical localization of Na+,K+-activated ATPase in chloride cells from the gills of a euryhaline teleost. Anat Rec. 1979 Jan;193(1):99–129. doi: 10.1002/ar.1091930107. [DOI] [PubMed] [Google Scholar]
  21. Karnaky K. G., Jr, Kinter W. B. Killifish opercular skin: a flat epithelium with a high density of chloride cells. J Exp Zool. 1977 Mar;199(3):355–364. doi: 10.1002/jez.1401990309. [DOI] [PubMed] [Google Scholar]
  22. Karnaky K. J., Jr, Degnan K. J., Zadunaisky J. A. Chloride transport across isolated opercular epithelium of killifish: a membrane rich in chloride cells. Science. 1977 Jan 14;195(4274):203–205. doi: 10.1126/science.831273. [DOI] [PubMed] [Google Scholar]
  23. Karnaky K. J., Jr, Ernst S. A., Philpott C. W. Teleost chloride cell. I. Response of pupfish Cyprinodon variegatus gill Na,K-ATPase and chloride cell fine structure to various high salinity environments. J Cell Biol. 1976 Jul;70(1):144–156. doi: 10.1083/jcb.70.1.144. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Karnaky K. J., Jr, Kinter L. B., Kinter W. B., Stirling C. E. Teleost chloride cell. II. Autoradiographic localization of gill Na,K-ATPase in killifish Fundulus heteroclitus adapted to low and high salinity environments. J Cell Biol. 1976 Jul;70(1):157–177. doi: 10.1083/jcb.70.1.157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Malnic G., Giebisch G. Some electrical properties of distal tubular epithelium in the rat. Am J Physiol. 1972 Oct;223(4):797–808. doi: 10.1152/ajplegacy.1972.223.4.797. [DOI] [PubMed] [Google Scholar]
  26. Martin B. J., Philpott C. W. The adaptive response of the salt glands of adult mallard ducks to a salt water regime: an ultrastructural and tracer study. J Exp Zool. 1973 Nov;186(2):111–122. doi: 10.1002/jez.1401860202. [DOI] [PubMed] [Google Scholar]
  27. Moreno J. H. Blockage of gallbladder tight junction cation-selective channels by 2,4,6-triaminopyrimidinium (TAP). J Gen Physiol. 1975 Jul;66(1):97–115. doi: 10.1085/jgp.66.1.97. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Pricam C., Humbert F., Perrelet A., Orci L. A freeze-etch study of the tight junctions of the rat kidney tubules. Lab Invest. 1974 Mar;30(3):286–291. [PubMed] [Google Scholar]
  29. Riddle C. V., Ernst S. A. Structural simplicity of the zonula occludens in the electrolyte secreting epithelium of the avian salt gland. J Membr Biol. 1979 Mar 28;45(1-2):21–35. doi: 10.1007/BF01869292. [DOI] [PubMed] [Google Scholar]
  30. Sackin H., Boulpaep E. L. Models for coupling of salt and water transport; Proximal tubular reabsorption in Necturus kidney. J Gen Physiol. 1975 Dec;66(6):671–733. doi: 10.1085/jgp.66.6.671. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Sardet C., Pisam M., Maetz J. The surface epithelium of teleostean fish gills. Cellular and junctional adaptations of the chloride cell in relation to salt adaptation. J Cell Biol. 1979 Jan;80(1):96–117. doi: 10.1083/jcb.80.1.96. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Schultz S. G. The role of paracellular pathways in isotonic fluid transport. Yale J Biol Med. 1977 Mar-Apr;50(2):99–113. [PMC free article] [PubMed] [Google Scholar]
  33. Silva P., Solomon R., Spokes K., Epstein F. Ouabain inhibition of gill Na-K-ATPase: relationship to active chloride transport. J Exp Zool. 1977 Mar;199(3):419–426. doi: 10.1002/jez.1401990316. [DOI] [PubMed] [Google Scholar]
  34. Simionescu N., Simionescu M. Galloylglucoses of low molecular weight as mordant in electron microscopy. I. Procedure, and evidence for mordanting effect. J Cell Biol. 1976 Sep;70(3):608–621. doi: 10.1083/jcb.70.3.608. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Stoff J. S., Silva P., Field M., Forrest J., Stevens A., Epstein F. H. Cyclic AMP regulation of active chloride transport in the rectal gland of marine elasmobranchs. J Exp Zool. 1977 Mar;199(3):443–448. doi: 10.1002/jez.1401990319. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES