Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1980 Nov 1;87(2):427–433. doi: 10.1083/jcb.87.2.427

Fibronectin-mediated uptake of gelatin-coated latex particles by peritoneal macrophages

PMCID: PMC2110743  PMID: 7430249

Abstract

The present study demonstrates the ability of plasma fibronectin or cold-insoluble globulin (Clg) to promote the uptake of 125I-labeled, gelatin-coated latex beads (g-Ltx*) by monolayers of peritoneal macrophages (PM). The uptake of g-Ltx* by PM was enhanced by Clg in a concentration-dependent fashion and required the presence of heparin (10 U/ml) as an obligatory cofactor for maximal particle uptake. Treatment of PM monolayers with trypsin (1 mg/ml) for 15 min at 37 degrees C after particle uptake removed less than 15% of the radioactivity incorporated by the monolayers. However, a similar trypsin treatment of the monolayers before the addition of latex particles depressed Clg-dependent uptake by greater than 75%. Pretreatment of PM monolayers with inhibitors of glycolysis effectively reduced the Clg-dependent uptake of latex. Similarly, pretreatment of monolayers with either inhibitors of protein synthesis or agents that disrupt cytoskeletal elements also significantly depressed Clg- dependent particle uptake. Phagocytosis of g-Ltx* by PM in the presence of Clg and heparin was confirmed by electron microscopy. Finally, g- Ltx* could also be effectively opsonized with Clg at 37 degrees C before their addition to the monolayers. These studies suggest that the recognition of g-Ltx* in the presence of Clg required cell surface protein(s) and that subsequent phagocytosis of these particles by PM was energy dependent and required intact intracellular cytoskeleton elements. Thus, PM monolayers provide a suitable system for further studies on the function of Clg in the recognition and phagocytosis of gelatin-coated particles by phagocytic cells.

Full Text

The Full Text of this article is available as a PDF (775.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen C., Saba T. M., Molnar J. Isolation, purification and characterization of opsonic protein. J Reticuloendothel Soc. 1973 May;13(5):410–423. [PubMed] [Google Scholar]
  2. Blumenstock F. A., Saba T. M., Weber P. Purification of alpha-2-opsonic protein from human serum and its measurement by immunoassay. J Reticuloendothel Soc. 1978 Feb;23(2):119–134. [PubMed] [Google Scholar]
  3. Blumenstock F., Weber P., Saba T. M. Isolation and biochemical characterization of alpha-2-opsonic glycoprotein from rat serum. J Biol Chem. 1977 Oct 25;252(20):7156–7162. [PubMed] [Google Scholar]
  4. Check I. J., Wolfman H. C., Coley T. B., Hunter R. L. Agglutination assay for human opsonic factor using gelatin-coated latex particles. J Reticuloendothel Soc. 1979 Apr;25(4):351–362. [PubMed] [Google Scholar]
  5. Cornell R. P., Saba T. M. Bioassay of serum opsonin and its depletion after colloid clearance in dogs. Am J Physiol. 1972 Sep;223(3):569–574. doi: 10.1152/ajplegacy.1972.223.3.569. [DOI] [PubMed] [Google Scholar]
  6. Curtis C. G., Lorand L. Fibrin-stabilizing factor (factor XIII). Methods Enzymol. 1976;45:177–191. doi: 10.1016/s0076-6879(76)45018-8. [DOI] [PubMed] [Google Scholar]
  7. Di Luzio N. R. Employment of lipids in the measurement and modification of cellular, humoral, and immune responses. Adv Lipid Res. 1972;10:43–88. doi: 10.1016/b978-0-12-024910-7.50009-9. [DOI] [PubMed] [Google Scholar]
  8. Gudewicz P. W., Filkins J. P. Glycogen metabolism in inflammatory macrophages. J Reticuloendothel Soc. 1976 Aug;20(2):147–157. [PubMed] [Google Scholar]
  9. Gudewicz P. W., Filkins J. P. Glycogen metabolism in macrophages: effect of exogenous glycogen on glucogenesis in inflammatory exudate leukocytes and macrophages. J Reticuloendothel Soc. 1974 Jul;16(1):1–8. [PubMed] [Google Scholar]
  10. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  11. MURRAY I. M. Clearance rate in relation to agglutinins for gelatin-stabilized colloid in the rat. Am J Physiol. 1963 Apr;204:655–659. doi: 10.1152/ajplegacy.1963.204.4.655. [DOI] [PubMed] [Google Scholar]
  12. Malawista S. E., Gee J. B., Bensch K. G. Cytochalasin B reversibly inhibits phagocytosis: functional, metabolic, and ultrastructural effects in human blood leukocytes and rabbit alveolar macrophages. Yale J Biol Med. 1971 Dec;44(3):286–300. [PMC free article] [PubMed] [Google Scholar]
  13. Mason R. J., Stossel T. P., Vaughan M. Quantitative studies of phagocytosis by alveolar macrophages. Biochim Biophys Acta. 1973 May 28;304(3):864–870. doi: 10.1016/0304-4165(73)90233-x. [DOI] [PubMed] [Google Scholar]
  14. McLain S., Siegel J., Molnar J., Allen C., Sabet T. A phagocytosis promoting factor of rat serum independent of the complement system. J Reticuloendothel Soc. 1976 Mar;19(3):127–138. [PubMed] [Google Scholar]
  15. Molnar J., Gelder F. B., Lai M. Z., Siefring G. E., Jr, Credo R. B., Lorand L. Purification of opsonically active human and rat cold-insoluble globulin (plasma fibronectin). Biochemistry. 1979 Sep 4;18(18):3909–3916. doi: 10.1021/bi00585a010. [DOI] [PubMed] [Google Scholar]
  16. Molnar J., McLain S., Allen C., Laga H., Gara A., Gelder F. The role of an alpha2-macroglobulin of rat serum in the phagocytosis of colloidal particles. Biochim Biophys Acta. 1977 Jul 22;493(1):37–54. doi: 10.1016/0005-2795(77)90258-6. [DOI] [PubMed] [Google Scholar]
  17. Mundschenk H., Hromec A., Fischer J. Phagocytic activity of the liver as a measure of hepatic circulation--a comparative study using 198 Au and 99m Tc-sulfur colloid. J Nucl Med. 1971 Nov;12(11):711–718. [PubMed] [Google Scholar]
  18. Müller-Eberhard H. J. Complement. Annu Rev Biochem. 1975;44:697–724. doi: 10.1146/annurev.bi.44.070175.003405. [DOI] [PubMed] [Google Scholar]
  19. OREN R., FARNHAM A. E., SAITO K., MILOFSKY E., KARNOVSKY M. L. Metabolic patterns in three types of phagocytizing cells. J Cell Biol. 1963 Jun;17:487–501. doi: 10.1083/jcb.17.3.487. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Pisano J. C., Jackson J. P., Di Luzio N. R., Ichinose H. Dimensions of humoral recognition factor depletion in carcinomatous patients. Cancer Res. 1972 Jan;32(1):11–15. [PubMed] [Google Scholar]
  21. REYNOLDS E. S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol. 1963 Apr;17:208–212. doi: 10.1083/jcb.17.1.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Reaven E. P., Axline S. G. Subplasmalemmal microfilaments and microtubules in resting and phagocytizing cultivated macrophages. J Cell Biol. 1973 Oct;59(1):12–27. doi: 10.1083/jcb.59.1.12. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Saba T. M., Di Luzio N. R. Kupffer cell phagocytosis and metabolism of a variety of particles as a function of opsonization. J Reticuloendothel Soc. 1965 Dec;2(5):437–453. [PubMed] [Google Scholar]
  24. Stossel T. P. Phagocytosis (first of three parts). N Engl J Med. 1974 Mar 28;290(13):717–723. doi: 10.1056/NEJM197403282901306. [DOI] [PubMed] [Google Scholar]
  25. Ukena T. E., Berlin R. D. Effect of colchicine and vinblastine on the topographical separation of membrane functions. J Exp Med. 1972 Jul 1;136(1):1–7. doi: 10.1084/jem.136.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Yamada K. M., Olden K. Fibronectins--adhesive glycoproteins of cell surface and blood. Nature. 1978 Sep 21;275(5677):179–184. doi: 10.1038/275179a0. [DOI] [PubMed] [Google Scholar]
  27. Zigmond S. H., Hirsch J. G. Effects of cytochalasin B on polymorphonuclear leucocyte locomotion, phagocytosis and glycolysis. Exp Cell Res. 1972 Aug;73(2):383–393. doi: 10.1016/0014-4827(72)90062-6. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES