Abstract
The present study demonstrates the ability of plasma fibronectin or cold-insoluble globulin (Clg) to promote the uptake of 125I-labeled, gelatin-coated latex beads (g-Ltx*) by monolayers of peritoneal macrophages (PM). The uptake of g-Ltx* by PM was enhanced by Clg in a concentration-dependent fashion and required the presence of heparin (10 U/ml) as an obligatory cofactor for maximal particle uptake. Treatment of PM monolayers with trypsin (1 mg/ml) for 15 min at 37 degrees C after particle uptake removed less than 15% of the radioactivity incorporated by the monolayers. However, a similar trypsin treatment of the monolayers before the addition of latex particles depressed Clg-dependent uptake by greater than 75%. Pretreatment of PM monolayers with inhibitors of glycolysis effectively reduced the Clg-dependent uptake of latex. Similarly, pretreatment of monolayers with either inhibitors of protein synthesis or agents that disrupt cytoskeletal elements also significantly depressed Clg- dependent particle uptake. Phagocytosis of g-Ltx* by PM in the presence of Clg and heparin was confirmed by electron microscopy. Finally, g- Ltx* could also be effectively opsonized with Clg at 37 degrees C before their addition to the monolayers. These studies suggest that the recognition of g-Ltx* in the presence of Clg required cell surface protein(s) and that subsequent phagocytosis of these particles by PM was energy dependent and required intact intracellular cytoskeleton elements. Thus, PM monolayers provide a suitable system for further studies on the function of Clg in the recognition and phagocytosis of gelatin-coated particles by phagocytic cells.
Full Text
The Full Text of this article is available as a PDF (775.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Allen C., Saba T. M., Molnar J. Isolation, purification and characterization of opsonic protein. J Reticuloendothel Soc. 1973 May;13(5):410–423. [PubMed] [Google Scholar]
- Blumenstock F. A., Saba T. M., Weber P. Purification of alpha-2-opsonic protein from human serum and its measurement by immunoassay. J Reticuloendothel Soc. 1978 Feb;23(2):119–134. [PubMed] [Google Scholar]
- Blumenstock F., Weber P., Saba T. M. Isolation and biochemical characterization of alpha-2-opsonic glycoprotein from rat serum. J Biol Chem. 1977 Oct 25;252(20):7156–7162. [PubMed] [Google Scholar]
- Check I. J., Wolfman H. C., Coley T. B., Hunter R. L. Agglutination assay for human opsonic factor using gelatin-coated latex particles. J Reticuloendothel Soc. 1979 Apr;25(4):351–362. [PubMed] [Google Scholar]
- Cornell R. P., Saba T. M. Bioassay of serum opsonin and its depletion after colloid clearance in dogs. Am J Physiol. 1972 Sep;223(3):569–574. doi: 10.1152/ajplegacy.1972.223.3.569. [DOI] [PubMed] [Google Scholar]
- Curtis C. G., Lorand L. Fibrin-stabilizing factor (factor XIII). Methods Enzymol. 1976;45:177–191. doi: 10.1016/s0076-6879(76)45018-8. [DOI] [PubMed] [Google Scholar]
- Di Luzio N. R. Employment of lipids in the measurement and modification of cellular, humoral, and immune responses. Adv Lipid Res. 1972;10:43–88. doi: 10.1016/b978-0-12-024910-7.50009-9. [DOI] [PubMed] [Google Scholar]
- Gudewicz P. W., Filkins J. P. Glycogen metabolism in inflammatory macrophages. J Reticuloendothel Soc. 1976 Aug;20(2):147–157. [PubMed] [Google Scholar]
- Gudewicz P. W., Filkins J. P. Glycogen metabolism in macrophages: effect of exogenous glycogen on glucogenesis in inflammatory exudate leukocytes and macrophages. J Reticuloendothel Soc. 1974 Jul;16(1):1–8. [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- MURRAY I. M. Clearance rate in relation to agglutinins for gelatin-stabilized colloid in the rat. Am J Physiol. 1963 Apr;204:655–659. doi: 10.1152/ajplegacy.1963.204.4.655. [DOI] [PubMed] [Google Scholar]
- Malawista S. E., Gee J. B., Bensch K. G. Cytochalasin B reversibly inhibits phagocytosis: functional, metabolic, and ultrastructural effects in human blood leukocytes and rabbit alveolar macrophages. Yale J Biol Med. 1971 Dec;44(3):286–300. [PMC free article] [PubMed] [Google Scholar]
- Mason R. J., Stossel T. P., Vaughan M. Quantitative studies of phagocytosis by alveolar macrophages. Biochim Biophys Acta. 1973 May 28;304(3):864–870. doi: 10.1016/0304-4165(73)90233-x. [DOI] [PubMed] [Google Scholar]
- McLain S., Siegel J., Molnar J., Allen C., Sabet T. A phagocytosis promoting factor of rat serum independent of the complement system. J Reticuloendothel Soc. 1976 Mar;19(3):127–138. [PubMed] [Google Scholar]
- Molnar J., Gelder F. B., Lai M. Z., Siefring G. E., Jr, Credo R. B., Lorand L. Purification of opsonically active human and rat cold-insoluble globulin (plasma fibronectin). Biochemistry. 1979 Sep 4;18(18):3909–3916. doi: 10.1021/bi00585a010. [DOI] [PubMed] [Google Scholar]
- Molnar J., McLain S., Allen C., Laga H., Gara A., Gelder F. The role of an alpha2-macroglobulin of rat serum in the phagocytosis of colloidal particles. Biochim Biophys Acta. 1977 Jul 22;493(1):37–54. doi: 10.1016/0005-2795(77)90258-6. [DOI] [PubMed] [Google Scholar]
- Mundschenk H., Hromec A., Fischer J. Phagocytic activity of the liver as a measure of hepatic circulation--a comparative study using 198 Au and 99m Tc-sulfur colloid. J Nucl Med. 1971 Nov;12(11):711–718. [PubMed] [Google Scholar]
- Müller-Eberhard H. J. Complement. Annu Rev Biochem. 1975;44:697–724. doi: 10.1146/annurev.bi.44.070175.003405. [DOI] [PubMed] [Google Scholar]
- OREN R., FARNHAM A. E., SAITO K., MILOFSKY E., KARNOVSKY M. L. Metabolic patterns in three types of phagocytizing cells. J Cell Biol. 1963 Jun;17:487–501. doi: 10.1083/jcb.17.3.487. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pisano J. C., Jackson J. P., Di Luzio N. R., Ichinose H. Dimensions of humoral recognition factor depletion in carcinomatous patients. Cancer Res. 1972 Jan;32(1):11–15. [PubMed] [Google Scholar]
- REYNOLDS E. S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol. 1963 Apr;17:208–212. doi: 10.1083/jcb.17.1.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reaven E. P., Axline S. G. Subplasmalemmal microfilaments and microtubules in resting and phagocytizing cultivated macrophages. J Cell Biol. 1973 Oct;59(1):12–27. doi: 10.1083/jcb.59.1.12. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Saba T. M., Di Luzio N. R. Kupffer cell phagocytosis and metabolism of a variety of particles as a function of opsonization. J Reticuloendothel Soc. 1965 Dec;2(5):437–453. [PubMed] [Google Scholar]
- Stossel T. P. Phagocytosis (first of three parts). N Engl J Med. 1974 Mar 28;290(13):717–723. doi: 10.1056/NEJM197403282901306. [DOI] [PubMed] [Google Scholar]
- Ukena T. E., Berlin R. D. Effect of colchicine and vinblastine on the topographical separation of membrane functions. J Exp Med. 1972 Jul 1;136(1):1–7. doi: 10.1084/jem.136.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yamada K. M., Olden K. Fibronectins--adhesive glycoproteins of cell surface and blood. Nature. 1978 Sep 21;275(5677):179–184. doi: 10.1038/275179a0. [DOI] [PubMed] [Google Scholar]
- Zigmond S. H., Hirsch J. G. Effects of cytochalasin B on polymorphonuclear leucocyte locomotion, phagocytosis and glycolysis. Exp Cell Res. 1972 Aug;73(2):383–393. doi: 10.1016/0014-4827(72)90062-6. [DOI] [PubMed] [Google Scholar]