Abstract
This report describes the influence of neurite fasciculation on two aspects of nerve growth from chick spinal ganglia in vitro: the inhibition of outgrowth by high concentrations of nerve growth factor (NGF) and the preferential growth of neurites toward a capillary tube containing NGF. These studies involved a comparison of cultures of single cells, cell aggregates, and intact ganglia and the use of antibodies against the nerve cell adhesion molecule (CAM) to perturb fasciculation under a variety of conditions. The inhibition of outgrowth, which was observed with ganglia and aggregates but not with single cells, was correlated with a thickening of neurite fascicles. In accord with this observation, anti-CAM, which diminishes fasciculation by inhibiting side-to-side interactions between individual neurites, also partially reversed the inhibition of neurite outgrowth at high NGF concentrations. On the basis of these and other studies, we consider the possibility that neurite bundling causes an increase in the elastic tension of a fascicle without a compensatory increase in its adhesion to substratum. It is proposed that this imbalance could inhibit neurites from growing out from a ganglion and even result in retraction of preexisting outgrowth. In the analysis of NGF-directed growth, it was found that a capillary source of NGF produced a steep but transient NGF gradient that subsided before most neurites had emerged from the ganglion. Nevertheless, the presence of a single NGF capillary caused a dramatic and persistent asymmetry in the outgrowth of neurites from ganglia or cell aggregates. In contrast, processes of individual cells did not appear to orient themselves toward the capillary. The most revealing finding was that anti-CAM antibodies caused a decrease in the asymmetry of neurite outgrowth. These results suggest that side-to-side interactions among neurites can influence the guidance of nerve bundles by sustaining and amplifying an initial directional signal.
Full Text
The Full Text of this article is available as a PDF (1.1 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Brackenbury R., Thiery J. P., Rutishauser U., Edelman G. M. Adhesion among neural cells of the chick embryo. I. An immunological assay for molecules involved in cell-cell binding. J Biol Chem. 1977 Oct 10;252(19):6835–6840. [PubMed] [Google Scholar]
- Bray D. Branching patterns of individual sympathetic neurons in culture. J Cell Biol. 1973 Mar;56(3):702–712. doi: 10.1083/jcb.56.3.702. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bray D., Bunge M. B. The growth cone in neurite extension. Ciba Found Symp. 1973;14:195–209. doi: 10.1002/9780470719978.ch9. [DOI] [PubMed] [Google Scholar]
- Bray D. Mechanical tension produced by nerve cells in tissue culture. J Cell Sci. 1979 Jun;37:391–410. doi: 10.1242/jcs.37.1.391. [DOI] [PubMed] [Google Scholar]
- Bray D. Model for membrane movements in the neural growth cone. Nature. 1973 Jul 13;244(5411):93–96. doi: 10.1038/244093a0. [DOI] [PubMed] [Google Scholar]
- Campenot R. B. Local control of neurite development by nerve growth factor. Proc Natl Acad Sci U S A. 1977 Oct;74(10):4516–4519. doi: 10.1073/pnas.74.10.4516. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chamlet J. H., Goller I., Burnstock G. Selective growth of sympathetic nerve fibers to explants of normally densely innervated autonomic effector organs in tissue culture. Dev Biol. 1973 Apr;31(2):362–379. doi: 10.1016/0012-1606(73)90272-8. [DOI] [PubMed] [Google Scholar]
- Cook J. E., Horder T. J. The multiple factors determining retinotopic order in the growth of optic fibres into the optic tectum. Philos Trans R Soc Lond B Biol Sci. 1977 Apr 26;278(961):261–276. doi: 10.1098/rstb.1977.0041. [DOI] [PubMed] [Google Scholar]
- Coughlin M. D. Target organ stimulation of parasympathetic nerve growth in the developing mouse submandibular gland. Dev Biol. 1975 Mar;43(1):140–158. doi: 10.1016/0012-1606(75)90137-2. [DOI] [PubMed] [Google Scholar]
- Ebendal T., Jacobson C. O. Tissue explants affecting extension and orientation of axons in cultured chick embryo ganglia. Exp Cell Res. 1977 Mar 15;105(2):379–387. doi: 10.1016/0014-4827(77)90135-5. [DOI] [PubMed] [Google Scholar]
- Greene L. A. Quantitative in vitro studies on the nerve growth factor (NGF) requirement of neurons. II. Sensory neurons. Dev Biol. 1977 Jul 1;58(1):106–113. doi: 10.1016/0012-1606(77)90077-x. [DOI] [PubMed] [Google Scholar]
- Gundersen R. W., Barrett J. N. Neuronal chemotaxis: chick dorsal-root axons turn toward high concentrations of nerve growth factor. Science. 1979 Nov 30;206(4422):1079–1080. doi: 10.1126/science.493992. [DOI] [PubMed] [Google Scholar]
- Hendry I. A., Stöckel K., Thoenen H., Iversen L. L. The retrograde axonal transport of nerve growth factor. Brain Res. 1974 Mar 15;68(1):103–121. doi: 10.1016/0006-8993(74)90536-8. [DOI] [PubMed] [Google Scholar]
- Horder T. J., Martin K. A. Morphogenetics as an alternative to chemospecificity in the formation of nerve connections. A review of literature, before 1978, concerning the control of growth of regenerating optic nerve fibres to specific locations in the optic tectum and a new interpretation based on contact guidance. Symp Soc Exp Biol. 1978;32:275–358. [PubMed] [Google Scholar]
- Johnson D. G., Gorden P., Kopin I. J. A sensitive radioimmunoassay for 7S nerve growth factor antigens in serum and tissues. J Neurochem. 1971 Dec;18(12):2355–2362. doi: 10.1111/j.1471-4159.1971.tb00190.x. [DOI] [PubMed] [Google Scholar]
- LEVI-MONTALCINI R. THE NERVE GROWTH FACTOR. Ann N Y Acad Sci. 1964 Oct 9;118:149–170. doi: 10.1111/j.1749-6632.1964.tb33978.x. [DOI] [PubMed] [Google Scholar]
- Letourneau P. C. Cell-to-substratum adhesion and guidance of axonal elongation. Dev Biol. 1975 May;44(1):92–101. doi: 10.1016/0012-1606(75)90379-6. [DOI] [PubMed] [Google Scholar]
- Letourneau P. C. Chemotactic response of nerve fiber elongation to nerve growth factor. Dev Biol. 1978 Sep;66(1):183–196. doi: 10.1016/0012-1606(78)90283-x. [DOI] [PubMed] [Google Scholar]
- Letourneau P. C. Possible roles for cell-to-substratum adhesion in neuronal morphogenesis. Dev Biol. 1975 May;44(1):77–91. doi: 10.1016/0012-1606(75)90378-4. [DOI] [PubMed] [Google Scholar]
- Levi-Montalcini R., Angeletti P. U. Nerve growth factor. Physiol Rev. 1968 Jul;48(3):534–569. doi: 10.1152/physrev.1968.48.3.534. [DOI] [PubMed] [Google Scholar]
- Levi-Montalcini R., Booker B. DESTRUCTION OF THE SYMPATHETIC GANGLIA IN MAMMALS BY AN ANTISERUM TO A NERVE-GROWTH PROTEIN. Proc Natl Acad Sci U S A. 1960 Mar;46(3):384–391. doi: 10.1073/pnas.46.3.384. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Levi-Montalcini R. The nerve growth factor: its role in growth, differentiation and function of the sympathetic adrenergic neuron. Prog Brain Res. 1976;45:235–258. doi: 10.1016/S0079-6123(08)60993-0. [DOI] [PubMed] [Google Scholar]
- Lopresti V., Macagno E. R., Levinthal C. Structure and development of neuronal connections in isogenic organisms: cellular interactions in the development of the optic lamina of Daphnia. Proc Natl Acad Sci U S A. 1973 Feb;70(2):433–437. doi: 10.1073/pnas.70.2.433. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nornes H. O., Das G. D. Temporal pattern of neurogenesis in spinal cord: cytoarchitecture and directed growth of axons. Proc Natl Acad Sci U S A. 1972 Jul;69(7):1962–1966. doi: 10.1073/pnas.69.7.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Okun L. M. Isolated dorsal root ganglion neurons in culture: cytological maturation and extension of electrically active processes. J Neurobiol. 1972;3(2):111–151. doi: 10.1002/neu.480030203. [DOI] [PubMed] [Google Scholar]
- Rutishauser U., Gall W. E., Edelman G. M. Adhesion among neural cells of the chick embryo. IV. Role of the cell surface molecule CAM in the formation of neurite bundles in cultures of spinal ganglia. J Cell Biol. 1978 Nov;79(2 Pt 1):382–393. doi: 10.1083/jcb.79.2.382. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rutishauser U., Thiery J. P., Brackenbury R., Edelman G. M. Adhesion among neural cells of the chick embryo. III. Relationship of the surface molecule CAM to cell adhesion and the development of histotypic patterns. J Cell Biol. 1978 Nov;79(2 Pt 1):371–381. doi: 10.1083/jcb.79.2.371. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schubert D., Whitlock C. Alteration of cellular adhesion by nerve growth factor. Proc Natl Acad Sci U S A. 1977 Sep;74(9):4055–4058. doi: 10.1073/pnas.74.9.4055. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Strassman R. J., Letourneau P. C., Wessells N. K. Elongation of axons in an agar matrix that does not support cell locomotion. Exp Cell Res. 1973 Oct;81(2):482–487. doi: 10.1016/0014-4827(73)90539-9. [DOI] [PubMed] [Google Scholar]
- Thiery J. P., Brackenbury R., Rutishauser U., Edelman G. M. Adhesion among neural cells of the chick embryo. II. Purification and characterization of a cell adhesion molecule from neural retina. J Biol Chem. 1977 Oct 10;252(19):6841–6845. [PubMed] [Google Scholar]