Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1980 Nov 1;87(2):386–397. doi: 10.1083/jcb.87.2.386

Calmodulin confers calcium sensitivity on ciliary dynein ATPase

PMCID: PMC2110756  PMID: 6448862

Abstract

Extraction of demembranated cilia of Tetrahymena by Tris-EDTA (denoted by the suffix E) yields 14S-E and 30S-E dyneins with ATPase activities that are slightly increased by Ca++. This effect is moderately potentiated when bovine brain calmodulin is added to the assay mixture. Extraction with 0.5 M KCl (denoted by the suffix K) yeilds a 14S-K dynein with a low basal ATPase activity in the presence of Ca++. Subsequent addition of calmodulin causes marked activation (up to 10- fold) of ATPase activity. Although 14S-K and 14S-E dyneins have Ca++- dependent ATPase activities that differ markedly in the degree of activation, the concentration of calmodulin required for half-maximal saturation is similar for both, approximately 0.1 microM. Both 30S-K and 30S-E dyneins, however, require approximately 0.7 microM bovine brain calmodulin to reach half-maximal activation of their Ca++- dependent ATPase activities. Tetrahymena calmodulin is as effective as bovine brain calmodulin in activating 30S dynein , but may be slightly less effective than the brain calmodulin in activating 14S dynein. Rabbit skeletal muscle troponin C also activates the Ca++-dependent ATPase activity of 30S dynein and, to a lesser extent, that of 14S dynein, but in both cases is less effective than calmodulin. The interaction of calmodulin with dynein that results in ATPase activation is largely complete in less than 1 min, and is prevented by the presence of low concentrations of ATP. Adenylyl imidodiphosphate can partially prevent activation of dynein ATPase by calmodulin plus Ca++, but at much higher concentrations than required for prevention by ATP. beta, gamma-methyl-adenosine triphosphate appears not to prevent this activation. The presence of Ca++-dependent calmodulin-binding sites on 14S and 30S dyneins was demonstrated by the Ca++-dependent retention of the dyneins on a calmodulin-Sepharose-4B column. Gel electrophoresis of 14S dynein that had been purified by the affinity-chromatography procedure showed that presence of two major and one minor high molecular weight components. Similar analysis of 30S dynein purified by this procedure also revealed on major and one minor high molecular weight components that were different from the major components of 14S dynein. Ca++-dependent binding sites for calmodulin were shown to be present on axonemes that had been extracted twice with Tris-EDTA or with 0.5 M KCl by the use of 35S-labeled Tetrahymena calmodulin. It is concluded that the 14S and 30S dyneins of Tetrahymena contain Ca++- dependent binding sites for calmodulin and the calmodulin mediates the Ca++-regulation of the dynein ATPases of Tetrahymena cilia.

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amphlett G. W., Vanaman T. C., Perry S. V. Effect of the troponin C-like protein from bovine brain (brain modulator protein) on the Mg2+-stimulated ATPase of skeletal muscle actinomyosin. FEBS Lett. 1976 Dec 15;72(1):163–168. doi: 10.1016/0014-5793(76)80836-8. [DOI] [PubMed] [Google Scholar]
  2. Blum J. J. ATPase activity of Tetrahymena cilia before and after extraction of dynein. Arch Biochem Biophys. 1973 May;156(1):310–320. doi: 10.1016/0003-9861(73)90369-x. [DOI] [PubMed] [Google Scholar]
  3. Blum J. J. Effects of metabolites present during growth of Tetrahymena pyriformis on the subsequent secretion of lysosomal hydrolases. J Cell Physiol. 1975 Aug;86(1):131–142. doi: 10.1002/jcp.1040860115. [DOI] [PubMed] [Google Scholar]
  4. Blum J. J., Hayes A. A comparison of the effects of gentle heating, acetone, and the sulfhydryl reagent bis (4-fluoro-3-nitrophenyl) sulfone on the ATPase activity and pellet height response of tetrahymena cilia. J Supramol Struct. 1977;6(2):155–167. doi: 10.1002/jss.400060202. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Blum J. J., Hayes A. A high-affinity ATP-binding site on 30S dynein. J Supramol Struct. 1979;11(2):117–122. doi: 10.1002/jss.400110202. [DOI] [PubMed] [Google Scholar]
  6. Blum J. J., Hayes A. Effect of calcium on the pellet height response of Tetrahymena cilia. J Supramol Struct. 1977;7(2):205–211. doi: 10.1002/jss.400070205. [DOI] [PubMed] [Google Scholar]
  7. Blum J. J., Hayes A. Some changes in the properties of dynein ATPase in situ and after extraction following heat treatment of cilia. J Supramol Struct. 1976;5(1):15–25. doi: 10.1002/jss.400050103. [DOI] [PubMed] [Google Scholar]
  8. Blum J. J., Hines M. Biophysics of flagellar motility. Q Rev Biophys. 1979 May;12(2):103–180. doi: 10.1017/s0033583500002742. [DOI] [PubMed] [Google Scholar]
  9. Bretscher M. S., Smith A. E. Biosynthesis of 35 S-L-methionine of very high specific activity. Anal Biochem. 1972 May;47(1):310–312. doi: 10.1016/0003-2697(72)90308-9. [DOI] [PubMed] [Google Scholar]
  10. Brokaw C. J. Calcium-induced asymmetrical beating of triton-demembranated sea urchin sperm flagella. J Cell Biol. 1979 Aug;82(2):401–411. doi: 10.1083/jcb.82.2.401. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Dabrowska R., Sherry J. M., Aromatorio D. K., Hartshorne D. J. Modulator protein as a component of the myosin light chain kinase from chicken gizzard. Biochemistry. 1978 Jan 24;17(2):253–258. doi: 10.1021/bi00595a010. [DOI] [PubMed] [Google Scholar]
  12. Doughty M. J. Control of ciliary activity in paramecium--IV. Ca2+ modification of Mg2+ dependent dynein ATPase activity. Comp Biochem Physiol B. 1979;64(3):255–266. doi: 10.1016/0305-0491(79)90140-8. [DOI] [PubMed] [Google Scholar]
  13. Gibbons B. H., Gibbons I. R. Calcium-induced quiescence in reactivated sea urchin sperm. J Cell Biol. 1980 Jan;84(1):13–27. doi: 10.1083/jcb.84.1.13. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gibbons I. R., Fronk E. A latent adenosine triphosphatase form of dynein 1 from sea urchin sperm flagella. J Biol Chem. 1979 Jan 10;254(1):187–196. [PubMed] [Google Scholar]
  15. Gibbons I. R., Rowe A. J. Dynein: A Protein with Adenosine Triphosphatase Activity from Cilia. Science. 1965 Jul 23;149(3682):424–426. doi: 10.1126/science.149.3682.424. [DOI] [PubMed] [Google Scholar]
  16. Goodman M., Pechère J. F., Haiech J., Demaille J. G. Evolutionary diversification of structure and function in the family of intracellular calcium-binding proteins. J Mol Evol. 1979 Nov;13(4):331–352. doi: 10.1007/BF01731373. [DOI] [PubMed] [Google Scholar]
  17. Grand R. J., Perry S. V., Weeks R. A. Troponin C-like proteins (calmodulins) from mammalian smooth muscle and other tissues. Biochem J. 1979 Feb 1;177(2):521–529. doi: 10.1042/bj1770521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hathaway D. R., Adelstein R. S. Human platelet myosin light chain kinase requires the calcium-binding protein calmodulin for activity. Proc Natl Acad Sci U S A. 1979 Apr;76(4):1653–1657. doi: 10.1073/pnas.76.4.1653. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hayashi M., Takahashi M. Ciliary adenosinetriphosphatase from a slow swimming mutant of Paramecium caudatum. J Biol Chem. 1979 Nov 25;254(22):11561–11565. [PubMed] [Google Scholar]
  20. Holwill M. E., McGregor J. L. Effects of calcium on flagellar movement in the trypanosome Crithidia oncopelti. J Exp Biol. 1976 Aug;65(1):229–242. doi: 10.1242/jeb.65.1.229. [DOI] [PubMed] [Google Scholar]
  21. Hoshino M. Preparation and characterization of a dissociated 14-s form from 30-S dynein of Tetrahymena cilia. Biochim Biophys Acta. 1974 May 10;351(1):142–154. doi: 10.1016/0005-2795(74)90073-7. [DOI] [PubMed] [Google Scholar]
  22. Jamieson G. A., Jr, Vanaman T. C., Blum J. J. Presence of calmodulin in Tetrahymena. Proc Natl Acad Sci U S A. 1979 Dec;76(12):6471–6475. doi: 10.1073/pnas.76.12.6471. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Jamieson G. A., Jr, Vanaman T. C. Calcium-dependent affinity chromatography of calmodulin on an immobilized phenothiazine. Biochem Biophys Res Commun. 1979 Oct 12;90(3):1048–1056. doi: 10.1016/0006-291x(79)91932-6. [DOI] [PubMed] [Google Scholar]
  24. Kumagai H., Nishida E., Ishiguro K., Murofushi H. Isolation of calmodulin from the protozoan, Tetrahymena pyriformis, by the use of a tubulin-Sepharose 4B affinity column. J Biochem. 1980 Feb;87(2):667–670. doi: 10.1093/oxfordjournals.jbchem.a132792. [DOI] [PubMed] [Google Scholar]
  25. Levin R. M., Weiss B. Binding of trifluoperazine to the calcium-dependent activator of cyclic nucleotide phosphodiesterase. Mol Pharmacol. 1977 Jul;13(4):690–697. [PubMed] [Google Scholar]
  26. Mabuchi I., Shimizu T. Electrophoretic studies on dyneins from Tetrahymena cilia. J Biochem. 1974 Nov;76(5):991–999. [PubMed] [Google Scholar]
  27. Nairn A. C., Perry S. V. Calmodulin and myosin light-chain kinase of rabbit fast skeletal muscle. Biochem J. 1979 Apr 1;179(1):89–97. doi: 10.1042/bj1790089. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Penningroth S. M., Witman G. B. Effects of adenylyl imidodiphosphate, a nonhydrolyzable adenosine triphosphate analog, on reactivated and rigor wave sea urchin sperm. J Cell Biol. 1978 Dec;79(3):827–832. doi: 10.1083/jcb.79.3.827. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Perry S. V., Cole H. A. Phosphorylation of troponin and the effects of interactions between the components of the complex. Biochem J. 1974 Sep;141(3):733–743. doi: 10.1042/bj1410733. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Teo T. S., Wang J. H. Mechanism of activation of a cyclic adenosine 3':5'-monophosphate phosphodiesterase from bovine heart by calcium ions. Identification of the protein activator as a Ca2+ binding protein. J Biol Chem. 1973 Sep 10;248(17):5950–5955. [PubMed] [Google Scholar]
  31. Wang J. H., Waisman D. M. Calmodulin and its role in the second-messenger system. Curr Top Cell Regul. 1979;15:47–107. doi: 10.1016/b978-0-12-152815-7.50006-5. [DOI] [PubMed] [Google Scholar]
  32. Watterson D. M., Harrelson W. G., Jr, Keller P. M., Sharief F., Vanaman T. C. Structural similarities between the Ca2+-dependent regulatory proteins of 3':5'-cyclic nucleotide phosphodiesterase and actomyosin ATPase. J Biol Chem. 1976 Aug 10;251(15):4501–4513. [PubMed] [Google Scholar]
  33. Watterson D. M., Mendel P. A., Vanaman T. C. Comparison of calcium-modulated proteins from vertebrate brains. Biochemistry. 1980 Jun 10;19(12):2672–2676. doi: 10.1021/bi00553a020. [DOI] [PubMed] [Google Scholar]
  34. Watterson D. M., Sharief F., Vanaman T. C. The complete amino acid sequence of the Ca2+-dependent modulator protein (calmodulin) of bovine brain. J Biol Chem. 1980 Feb 10;255(3):962–975. [PubMed] [Google Scholar]
  35. Watterson D. M., Vanaman T. C. Affinity chromatography purification of a cyclic nucleotide phosphodiesterase using immobilized modulator protein, a troponin C-like protein from brain. Biochem Biophys Res Commun. 1976 Nov 8;73(1):40–46. doi: 10.1016/0006-291x(76)90494-0. [DOI] [PubMed] [Google Scholar]
  36. Weiss B., Levin R. M. Mechanism for selectively inhibiting the activation of cyclic nucleotide phosphodiesterase and adenylate cyclase by antipsychotic agents. Adv Cyclic Nucleotide Res. 1978;9:285–303. [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES