Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1980 Dec 1;87(3):589–593. doi: 10.1083/jcb.87.3.589

Mechanism for the selection of nuclear polypeptides in Xenopus oocytes. II. Two-dimensional gel analysis

PMCID: PMC2110775  PMID: 7193211

Abstract

The role of the nuclear envelope in controlling intracellular protein exchanges was investigated in vivo, by determining the effect of altering nuclear permeability on (a) the protein composition of the nucleoplasm and (b) the nuclear uptake rates of specific endogenous proteins. The nuclear envelopes were disrupted by puncturing oocytes in the region of the germinal vesicle by use of glass needles. Nuclear proteins were analyzed in punctured and control cells by two- dimensional gel electrophoresis, fluorography, and double-labeling techniques. Over 300 nuclear polypeptides were identified in the fluorographs. Of this number, only approximately 10-15 were found to vary between punctured and control nuclei; furthermore, different polypeptides varied in each experiment. These qualitative studies indicate that specific binding within the nucleoplasm, and not selection by the envelope, is the main factor in maintaining the protein composition of the nucleus. The nuclear uptake rates of five individual polypeptides, ranging in molecular weight from 43,000 to 100,000, were analyzed by use of double-labeling procedures. Only one of the polypeptides (actin) entered the nuclei more rapidly after disruption of the envelope. That the nuclear uptake of certain endogenous proteins is unaffected by puncturing demonstrates that passage across the envelope is not a rate-limiting step in the nucleocytoplasmic exchange of these molecules.

Full Text

The Full Text of this article is available as a PDF (629.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bonner W. M. Protein migration into nuclei. I. Frog oocyte nuclei in vivo accumulate microinjected histones, allow entry to small proteins, and exclude large proteins. J Cell Biol. 1975 Feb;64(2):421–430. doi: 10.1083/jcb.64.2.421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bonner W. M. Protein migration into nuclei. II. Frog oocyte nuclei accumulate a class of microinjected oocyte nuclear proteins and exclude a class of microinjected oocyte cytoplasmic proteins. J Cell Biol. 1975 Feb;64(2):431–437. doi: 10.1083/jcb.64.2.431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Clark T. G., Merriam R. W. Diffusible and bound actin nuclei of Xenopus laevis oocytes. Cell. 1977 Dec;12(4):883–891. doi: 10.1016/0092-8674(77)90152-0. [DOI] [PubMed] [Google Scholar]
  4. Clark T. G., Rosenbaum J. L. An actin filament matrix in hand-isolated nuclei of X. laevis oocytes. Cell. 1979 Dec;18(4):1101–1108. doi: 10.1016/0092-8674(79)90223-x. [DOI] [PubMed] [Google Scholar]
  5. De Robertis E. M., Longthorne R. F., Gurdon J. B. Intracellular migration of nuclear proteins in Xenopus oocytes. Nature. 1978 Mar 16;272(5650):254–256. doi: 10.1038/272254a0. [DOI] [PubMed] [Google Scholar]
  6. Dumont J. N. Oogenesis in Xenopus laevis (Daudin). I. Stages of oocyte development in laboratory maintained animals. J Morphol. 1972 Feb;136(2):153–179. doi: 10.1002/jmor.1051360203. [DOI] [PubMed] [Google Scholar]
  7. Feldherr C. M. A comparative study of nucleocytoplasmic interactions. J Cell Biol. 1969 Sep;42(3):841–845. doi: 10.1083/jcb.42.3.841. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Feldherr C. M., Pomerantz J. Mechanism for the selection of nuclear polypeptides in Xenopus oocytes. J Cell Biol. 1978 Jul;78(1):168–175. doi: 10.1083/jcb.78.1.168. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Feldherr C. M., Richmond P. A. Manual enucleation of Xenopus oocytes. Methods Cell Biol. 1978;17:75–79. doi: 10.1016/s0091-679x(08)61135-8. [DOI] [PubMed] [Google Scholar]
  10. Feldherr C. M. The uptake of endogenous proteins by oocyte nuclei. Exp Cell Res. 1975 Jul;93(2):411–419. doi: 10.1016/0014-4827(75)90467-x. [DOI] [PubMed] [Google Scholar]
  11. Gurdon J. B. Nuclear transplantation and the control of gene activity in animal development. Proc R Soc Lond B Biol Sci. 1970 Dec 1;176(1044):303–314. doi: 10.1098/rspb.1970.0050. [DOI] [PubMed] [Google Scholar]
  12. Horowitz S. B., Moore L. C. The nuclear permeability, intracellular distribution, and diffusion of inulin in the amphibian oocyte. J Cell Biol. 1974 Feb;60(2):405–415. doi: 10.1083/jcb.60.2.405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Laskey R. A., Mills A. D. Quantitative film detection of 3H and 14C in polyacrylamide gels by fluorography. Eur J Biochem. 1975 Aug 15;56(2):335–341. doi: 10.1111/j.1432-1033.1975.tb02238.x. [DOI] [PubMed] [Google Scholar]
  14. Maccecchini M. L., Rudin Y., Blobel G., Schatz G. Import of proteins into mitochondria: precursor forms of the extramitochondrially made F1-ATPase subunits in yeast. Proc Natl Acad Sci U S A. 1979 Jan;76(1):343–347. doi: 10.1073/pnas.76.1.343. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Merriam R. W., Clark T. G. Actin in Xenopus oocytes. II. Intracellular distribution and polymerizability. J Cell Biol. 1978 May;77(2):439–447. doi: 10.1083/jcb.77.2.439. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. O'Farrell P. H., O'Farrell P. Z. Two-dimensional polyacrylamide gel electrophoretic fractionation. Methods Cell Biol. 1977;16:407–420. doi: 10.1016/s0091-679x(08)60116-8. [DOI] [PubMed] [Google Scholar]
  17. Paine P. L., Feldherr C. M. Nucleocytoplasmic exchange of macromolecules. Exp Cell Res. 1972 Sep;74(1):81–98. doi: 10.1016/0014-4827(72)90483-1. [DOI] [PubMed] [Google Scholar]
  18. Paine P. L., Moore L. C., Horowitz S. B. Nuclear envelope permeability. Nature. 1975 Mar 13;254(5496):109–114. doi: 10.1038/254109a0. [DOI] [PubMed] [Google Scholar]
  19. Wallace R. A., Hollinger T. G. Turnover of endogenous, microinjected, and sequestered protein in Xenopus oocytes. Exp Cell Res. 1979 Mar 15;119(2):277–287. doi: 10.1016/0014-4827(79)90355-0. [DOI] [PubMed] [Google Scholar]
  20. Wilson D. L., Hall M. E., Stone G. C., Rubin R. W. Some improvements in two-dimensional gel electrophoresis of proteins. Protein mapping of eukaryotic tissue extracts. Anal Biochem. 1977 Nov;83(1):33–44. doi: 10.1016/0003-2697(77)90506-1. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES