Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1980 Dec 1;87(3):746–754. doi: 10.1083/jcb.87.3.746

Occluding junctions and cytoskeletal components in a cultured transporting epithelium

I Meza, G Ibarra, M Sabanero, A Martinez-Palomo, M Cereijido
PMCID: PMC2110785  PMID: 7193213

Abstract

MDCK cells form uninterrupted monolayers and make occluding junctions similar to those of natural epithelia. This aricle explores the relationship between these junctions and the cytoskeleton by combining studies on the distribution of microfilaments and microtubules with the effect of drugs, such as colchicines and cytochalasin B, on the degree of tightness of the occluding junctions. To study the degree of tightness, monolayers were prepared by plating MDCK cells on mylon disks coated with collagen. Disks were mounted as flat sheets between two Lucite chambers, and the sealing capacity of the junctions was evaluated by measuring the electrical resistance across the monolayers. Equivalent monolayers on coverslips were used to study the distribution of microtubules and microfilaments by indirect immunofluorescence staining with antibodies against tubulin and actin. This was done both on complete cells and on cytoskeleton preparations in which the cell membranes had been solubilized before fixation. Staining with antiactin shows a reticular pattern of very fine filaments that spread radially toward the periphery where they form a continuous cortical ring underlying the plasma membrane. Staining with antitubulin depicts fibers that extend radially to form a network that occupies the cytoplasm up to the edges of the cell. Colchicine causes a profound disruption of microtubules but only a 27 percent decrease in the electrical resistance of the resting monolayers. Cytochalasin B, when present for prolonged periods, disrupts the cytoplasmic microfilaments and abolishes the electrical resistance. The cortical ring of filaments remains in place but appears fragmented with time. We find that removal of extracellular Ca(++), which causes the tight junctions to open, also causes the microfilaments and microtubules to retract toward the center of the cells. The process of junction opening and fiber retraction is reversed by the restoration of Ca(++). Colchicine has no effect on either the opening or reversal processes, but cytochalasin B inhibits the resealing of the junctions by disorganizing the filaments in the ring and at the apical border of the cells. These cytochalasin B effects are fully reversible. The correlation among cell shape, cytoskeletal patterns, and electrical resistance in the EGTA-opened and resealed monolayers suggests that microfilaments, through their association with plasma membrane components, play a role in positioning the junctional strands and influence the degree of sealing of the occluding junctions.

Full Text

The Full Text of this article is available as a PDF (1.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albertini D. F., Clark J. I. Membrane-microtubule interactions: concanavalin A capping induced redistribution of cytoplasmic microtubules and colchicine binding proteins. Proc Natl Acad Sci U S A. 1975 Dec;72(12):4976–4980. doi: 10.1073/pnas.72.12.4976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Asch B. B., Medina D., Brinkley B. R. Microtubules and actin-containing filaments of normal, preneoplastic, and neoplastic mouse mammary epithelial cells. Cancer Res. 1979 Mar;39(3):893–907. [PubMed] [Google Scholar]
  3. Ben-Ze'ev A., Duerr A., Solomon F., Penman S. The outer boundary of the cytoskeleton: a lamina derived from plasma membrane proteins. Cell. 1979 Aug;17(4):859–865. doi: 10.1016/0092-8674(79)90326-x. [DOI] [PubMed] [Google Scholar]
  4. Bentzel C. J., Hainau B., Edelman A., Anagnostopoulos T., Benedetti E. L. Effect of plant cytokinins on microfilaments and tight junction permeability. Nature. 1976 Dec 16;264(5587):666–668. doi: 10.1038/264666a0. [DOI] [PubMed] [Google Scholar]
  5. Brown S., Levinson W., Spudich J. A. Cytoskeletal elements of chick embryo fibroblasts revealed by detergent extraction. J Supramol Struct. 1976;5(2):119–130. doi: 10.1002/jss.400050203. [DOI] [PubMed] [Google Scholar]
  6. Bryan J., Wilson L. Are cytoplasmic microtubules heteropolymers? Proc Natl Acad Sci U S A. 1971 Aug;68(8):1762–1766. doi: 10.1073/pnas.68.8.1762. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cereijido M., Ehrenfeld J., Meza I., Martínez-Palomo A. Structural and functional membrane polarity in cultured monolayers of MDCK cells. J Membr Biol. 1980;52(2):147–159. doi: 10.1007/BF01869120. [DOI] [PubMed] [Google Scholar]
  8. Cereijido M., Robbins E. S., Dolan W. J., Rotunno C. A., Sabatini D. D. Polarized monolayers formed by epithelial cells on a permeable and translucent support. J Cell Biol. 1978 Jun;77(3):853–880. doi: 10.1083/jcb.77.3.853. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cereijido M., Stefani E., Palomo A. M. Occluding junctions in a cultured transporting epithelium: structural and functional heterogeneity. J Membr Biol. 1980 Mar 31;53(1):19–32. doi: 10.1007/BF01871169. [DOI] [PubMed] [Google Scholar]
  10. Craig S. W., Pardo J. V. alpha-Actinin localization in the junctional complex of intestinal epithelial cells. J Cell Biol. 1979 Jan;80(1):203–210. doi: 10.1083/jcb.80.1.203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. FARQUHAR M. G., PALADE G. E. Junctional complexes in various epithelia. J Cell Biol. 1963 May;17:375–412. doi: 10.1083/jcb.17.2.375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Frederiksen O., Leyssac P. P. Effects of cytochalasin B and dimethylsulphoxide on isosmotic fluid transport by rabbit gall-bladder in vitro. J Physiol. 1977 Feb;265(1):103–118. doi: 10.1113/jphysiol.1977.sp011707. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gabbiani G., Chaponnier C., Zumbe A., Vassalli P. Actin and tubulin co-cap with surface immunoglobulins in mouse B lymphocytes. Nature. 1977 Oct 20;269(5630):697–698. doi: 10.1038/269697a0. [DOI] [PubMed] [Google Scholar]
  14. Godman G. C., Miranda A. F. Cellular contractility and the visible effects of cytochalasin. Front Biol. 1978;46:277–429. [PubMed] [Google Scholar]
  15. Goodenough D. A., Revel J. P. A fine structural analysis of intercellular junctions in the mouse liver. J Cell Biol. 1970 May;45(2):272–290. doi: 10.1083/jcb.45.2.272. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Koch G. L., Smith M. J. An association between actin and the major histocompatibility antigen H-2. Nature. 1978 May 25;273(5660):274–278. doi: 10.1038/273274a0. [DOI] [PubMed] [Google Scholar]
  17. Lazarides E. Actin, alpha-actinin, and tropomyosin interaction in the structural organization of actin filaments in nonmuscle cells. J Cell Biol. 1976 Feb;68(2):202–219. doi: 10.1083/jcb.68.2.202. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lazarides E., Weber K. Actin antibody: the specific visualization of actin filaments in non-muscle cells. Proc Natl Acad Sci U S A. 1974 Jun;71(6):2268–2272. doi: 10.1073/pnas.71.6.2268. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. March S. C., Parikh I., Cuatrecasas P. A simplified method for cyanogen bromide activation of agarose for affinity chromatography. Anal Biochem. 1974 Jul;60(1):149–152. doi: 10.1016/0003-2697(74)90139-0. [DOI] [PubMed] [Google Scholar]
  20. Martinez-Palomo A., Meza I., Beaty G., Cereijido M. Experimental modulation of occluding junctions in a cultured transporting epithelium. J Cell Biol. 1980 Dec;87(3 Pt 1):736–745. doi: 10.1083/jcb.87.3.736. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Meldolesi J., Castiglioni G., Parma R., Nassivera N., De Camilli P. Ca++-dependent disassembly and reassembly of occluding junctions in guinea pig pancreatic acinar cells. Effect of drugs. J Cell Biol. 1978 Oct;79(1):156–172. doi: 10.1083/jcb.79.1.156. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Misfeldt D. S., Hamamoto S. T., Pitelka D. R. Transepithelial transport in cell culture. Proc Natl Acad Sci U S A. 1976 Apr;73(4):1212–1216. doi: 10.1073/pnas.73.4.1212. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Moore P. B., Ownby C. L., Carraway K. L. Interactions of cytoskeletal elements with the plasma membrane of sarcoma180 ascites tumor cells. Exp Cell Res. 1978 Sep;115(2):331–342. doi: 10.1016/0014-4827(78)90287-2. [DOI] [PubMed] [Google Scholar]
  24. Mousa G. Y., Trevithick J. R. Differentiation of rat lens epithelial cells in tissue culture. II. Effects of cytochalasins B and D on actin organization and differentiation. Dev Biol. 1977 Oct 1;60(1):14–25. doi: 10.1016/0012-1606(77)90107-5. [DOI] [PubMed] [Google Scholar]
  25. Nicolson G. L. Transmembrane control of the receptors on normal and tumor cells. I. Cytoplasmic influence over surface components. Biochim Biophys Acta. 1976 Apr 13;457(1):57–108. doi: 10.1016/0304-4157(76)90014-9. [DOI] [PubMed] [Google Scholar]
  26. Osborn M., Weber K. The display of microtubules in transformed cells. Cell. 1977 Nov;12(3):561–571. doi: 10.1016/0092-8674(77)90257-4. [DOI] [PubMed] [Google Scholar]
  27. Saborío J. L., Palmer E., Mez I. In vivo and in vitro synthesis of rat brain alpha- and beta-tubulins. Exp Cell Res. 1978 Jul;114(2):365–373. doi: 10.1016/0014-4827(78)90494-9. [DOI] [PubMed] [Google Scholar]
  28. Shelanski M. L., Gaskin F., Cantor C. R. Microtubule assembly in the absence of added nucleotides. Proc Natl Acad Sci U S A. 1973 Mar;70(3):765–768. doi: 10.1073/pnas.70.3.765. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Spudich J. A., Watt S. The regulation of rabbit skeletal muscle contraction. I. Biochemical studies of the interaction of the tropomyosin-troponin complex with actin and the proteolytic fragments of myosin. J Biol Chem. 1971 Aug 10;246(15):4866–4871. [PubMed] [Google Scholar]
  30. Taylor A., Mamelak M., Reaven E., Maffly R. Vasopressin: possible role of microtubules and microfilaments in its action. Science. 1973 Jul 27;181(4097):347–350. doi: 10.1126/science.181.4097.347. [DOI] [PubMed] [Google Scholar]
  31. Tucker R. W., Sanford K. K., Frankel R. Tubulin and actin in paired nonneoplastic and spontaneously transformed neoplastic cell lines in vitro: fluorescent antibody studies. Cell. 1978 Apr;13(4):629–642. doi: 10.1016/0092-8674(78)90213-1. [DOI] [PubMed] [Google Scholar]
  32. Wessells N. K., Evans J. Ultrastructural studies of early morphogenesis and cytodifferentiation in the embryonic mammalian pancreas. Dev Biol. 1968 Apr;17(4):413–446. doi: 10.1016/0012-1606(68)90073-0. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES