Abstract
The mechanism by which secretory proteins are segregated within the cisternal space of microsomal vesicles was studied using dog pancreas mRNA which directs the synthesis of 14 well-characterized nonglycosylated pancreatic exocrine proteins. In the absence of microsomal membranes, each of the proteins was synthesized as larger polypeptide chains (presecretory proteins). 1,000-2,000 daltons larger than their authentic counterparts as judged by polyacrylamide gel electrophoresis in SDS. Conditions optimal for the study of reconstituted rough microsomes in the reticulocyte lysate system were examined in detail using mRNA and microsomal membranes isolated from dog pancreas. Functional reconstitution of rough microsomes was considerably more efficient in the presence of micrococcal nuclease- treated membranes than in the presence of EDTA-treated membranes. Analysis for segregation of nascent secretory proteins by microsomal vesicles, using post-translational incubation in the presence of trypsin and chymotrypsin, 50 μg/ml each, was shown to be inadequate, because of the disruption of vesicles by protease activity. Addition of 1-3 mM tetracaine or 1 mM dibucaine stabilized microsomal membranes incubated in the presence of trypsin and chymotrypsin at either 0 degrees or 22 degrees C. Each of the pancreatic presecretory proteins studied was correctly processed to authentic secretory proteins by nuclease-treated microsomal membranes, as judged by both one-dimensional and two-dimensional gel electophoresis. Post-translational addition of membranes did not result in either segregation or processing of nascent polypeptide chains. Post- translational proteolysis, carried out in the presence of 3 mM tetracaine, indicated that each of the 14 characterized dog pancreas secretory proteins was quantitatively segregated by nuclease-treated microsomal vesicles. Segregation of nascent secretory proteins was irreversible, since radioactive amylase, as well as the other labeled secretory proteins, remained quantitatively sequestered in microsomal vesicles during a 90-min incubation at 22 degrees C after the cessation of protein synthesis. Studies employing synchronized protein synthesis and delayed addition of membranes indicated that all pancreatic presecretory proteins contain amino terminal peptide extensions. These peptide extensions are shown to mediate the cotranslational binding of presecretory proteins to microsomal membranes and the transport of nascent secretory proteins to the vesicular space. The maximum chain lengths which, during synthesis, allow segregation of nascent polypeptide chains varied between 61 (pretrypsinogen 2 + 3) and 88 (preprocarboxypeptidase A1) amino acid residues among dog pancreas presecretory proteins. Reconstitution studies using homologous and heterologous mixtures of mRNA (dog, guinea pig, and rat pancreas; rat liver) and micrococcal nuclease-treated microsomal membranes (dog, guinea pig, and rat liver; dog pancreas), in the presence of placental ribonuclease inhibitor, suggest that the translocation mechanism described is common to the rough endoplasmic reticulum of all mammalian tissues.
Full Text
The Full Text of this article is available as a PDF (2.8 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aviv H., Leder P. Purification of biologically active globin messenger RNA by chromatography on oligothymidylic acid-cellulose. Proc Natl Acad Sci U S A. 1972 Jun;69(6):1408–1412. doi: 10.1073/pnas.69.6.1408. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barnard E. A. Biological function of pancreatic ribonuclease. Nature. 1969 Jan 25;221(5178):340–344. doi: 10.1038/221340a0. [DOI] [PubMed] [Google Scholar]
- Bielinska M., Grant G. A., Boime I. Processing of placental peptide hormones synthesized in lysates containing membranes derived from tunicamycin-treated ascites tumor cells. J Biol Chem. 1978 Oct 25;253(20):7117–7119. [PubMed] [Google Scholar]
- Birken S., Fetherston J., Desmond J., Canfield R., Boime I. Partial amino acid sequence of the preprotein form of the alpha subunit of human choriogonadotropin and identification of the site of subsequent proteolytic cleavage. Biochem Biophys Res Commun. 1978 Dec 29;85(4):1247–1253. doi: 10.1016/0006-291x(78)91137-3. [DOI] [PubMed] [Google Scholar]
- Birken S., Smith D. L., Canfield R. E., Boime I. Partial amino acid sequence of human placental lactogen precursor and its mature hormone form produced by membrane-associated enzyme activity. Biochem Biophys Res Commun. 1977 Jan 10;74(1):106–112. doi: 10.1016/0006-291x(77)91381-x. [DOI] [PubMed] [Google Scholar]
- Blackburn P. Ribonuclease inhibitor from human placenta: rapid purification and assay. J Biol Chem. 1979 Dec 25;254(24):12484–12487. [PubMed] [Google Scholar]
- Blobel G., Dobberstein B. Transfer of proteins across membranes. I. Presence of proteolytically processed and unprocessed nascent immunoglobulin light chains on membrane-bound ribosomes of murine myeloma. J Cell Biol. 1975 Dec;67(3):835–851. doi: 10.1083/jcb.67.3.835. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blobel G., Dobberstein B. Transfer of proteins across membranes. II. Reconstitution of functional rough microsomes from heterologous components. J Cell Biol. 1975 Dec;67(3):852–862. doi: 10.1083/jcb.67.3.852. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blobel G., Sabatini D. D. Controlled proteolysis of nascent polypeptides in rat liver cell fractions. I. Location of the polypeptides within ribosomes. J Cell Biol. 1970 Apr;45(1):130–145. doi: 10.1083/jcb.45.1.130. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boime I., Szczesna E., Smith D. Membrane-dependent cleavage of the human placental lactogen precursor to its native form in ascites cell-free extracts. Eur J Biochem. 1977 Mar 1;73(2):515–520. doi: 10.1111/j.1432-1033.1977.tb11345.x. [DOI] [PubMed] [Google Scholar]
- Bonner W. M., Laskey R. A. A film detection method for tritium-labelled proteins and nucleic acids in polyacrylamide gels. Eur J Biochem. 1974 Jul 1;46(1):83–88. doi: 10.1111/j.1432-1033.1974.tb03599.x. [DOI] [PubMed] [Google Scholar]
- Chan S. J., Keim P., Steiner D. F. Cell-free synthesis of rat preproinsulins: characterization and partial amino acid sequence determination. Proc Natl Acad Sci U S A. 1976 Jun;73(6):1964–1968. doi: 10.1073/pnas.73.6.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chirgwin J. M., Przybyla A. E., MacDonald R. J., Rutter W. J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry. 1979 Nov 27;18(24):5294–5299. doi: 10.1021/bi00591a005. [DOI] [PubMed] [Google Scholar]
- Devillers-Thiery A., Kindt T., Scheele G., Blobel G. Homology in amino-terminal sequence of precursors to pancreatic secretory proteins. Proc Natl Acad Sci U S A. 1975 Dec;72(12):5016–5020. doi: 10.1073/pnas.72.12.5016. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dobberstein B., Blobel G. Functional interaction of plant ribosomes with animal microsomal membranes. Biochem Biophys Res Commun. 1977 Feb 21;74(4):1675–1682. doi: 10.1016/0006-291x(77)90637-4. [DOI] [PubMed] [Google Scholar]
- Dorner A. J., Kemper B. Conversion of pre-proparathyroid hormone to proparathyroid hormone by dog pancreatic microsomes. Biochemistry. 1978 Dec 12;17(25):5550–5555. doi: 10.1021/bi00618a034. [DOI] [PubMed] [Google Scholar]
- Ernst V., Levin D. H., Ranu R. S., London I. M. Control of protein synthesis in reticulocyte lysates: effects of 3':5'-cyclic AMP, ATP, and GTP on inhibitions induced by hemedeficiency, double-stranded RNA, and a reticulocyte translationa inhibitor. Proc Natl Acad Sci U S A. 1976 Apr;73(4):1112–1116. doi: 10.1073/pnas.73.4.1112. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Freienstein C., Blobel G. Use of eukaryotic native small ribosomal subunits for the translation of globin messenger RNA. Proc Natl Acad Sci U S A. 1974 Sep;71(9):3435–3439. doi: 10.1073/pnas.71.9.3435. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Green M. Cotranslational cleavage of immunoglobulin light chain precursors by plasmacytoma microsomes. Arch Biochem Biophys. 1979 Jul;195(2):368–377. doi: 10.1016/0003-9861(79)90362-x. [DOI] [PubMed] [Google Scholar]
- Habener J. F., Rosenblatt M., Kemper B., Kronenberg H. M., Rich A., Potts J. T., Jr Pre-proparathyroid hormone; amino acid sequence, chemical synthesis, and some biological studies of the precursor region. Proc Natl Acad Sci U S A. 1978 Jun;75(6):2616–2620. doi: 10.1073/pnas.75.6.2616. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hunt T., Vanderhoff G., London I. M. Control of globin synthesis: the role of heme. J Mol Biol. 1972 May 28;66(3):471–481. doi: 10.1016/0022-2836(72)90427-5. [DOI] [PubMed] [Google Scholar]
- Jamieson J. D., Palade G. E. Intracellular transport of secretory proteins in the pancreatic exocrine cell. I. Role of the peripheral elements of the Golgi complex. J Cell Biol. 1967 Aug;34(2):577–596. doi: 10.1083/jcb.34.2.577. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lingappa V. R., Devillers-Thiery A., Blobel G. Nascent prehormones are intermediates in the biosynthesis of authentic bovine pituitary growth hormone and prolactin. Proc Natl Acad Sci U S A. 1977 Jun;74(6):2432–2436. doi: 10.1073/pnas.74.6.2432. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lingappa V. R., Lingappa J. R., Blobel G. Chicken ovalbumin contains an internal signal sequence. Nature. 1979 Sep 13;281(5727):117–121. doi: 10.1038/281117a0. [DOI] [PubMed] [Google Scholar]
- Lingappa V. R., Lingappa J. R., Prasad R., Ebner K. E., Blobel G. Coupled cell-free synthesis, segregation, and core glycosylation of a secretory protein. Proc Natl Acad Sci U S A. 1978 May;75(5):2338–2342. doi: 10.1073/pnas.75.5.2338. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lizardi P. M., Engelberg A. Rapid isolation of RNA using proteinase K and sodium perchlorate. Anal Biochem. 1979 Sep 15;98(1):116–122. doi: 10.1016/0003-2697(79)90714-0. [DOI] [PubMed] [Google Scholar]
- Marcus A., Efron D., Weeks D. P. The wheat embryo cell-free system. Methods Enzymol. 1974;30:749–754. doi: 10.1016/0076-6879(74)30073-0. [DOI] [PubMed] [Google Scholar]
- McKean D. J., Maurer R. A. Complete amino acid sequence of the precursor region of rat prolactin. Biochemistry. 1978 Nov 28;17(24):5215–5219. doi: 10.1021/bi00617a022. [DOI] [PubMed] [Google Scholar]
- Mercier J. C., Haze G., Gaye P., Hue D. Amino terminal sequence of the precursor of ovine beta-lactoglobulin. Biochem Biophys Res Commun. 1978 Jun 29;82(4):1236–1245. doi: 10.1016/0006-291x(78)90320-0. [DOI] [PubMed] [Google Scholar]
- Neurath H., Walsh K. A. Role of proteolytic enzymes in biological regulation (a review). Proc Natl Acad Sci U S A. 1976 Nov;73(11):3825–3832. doi: 10.1073/pnas.73.11.3825. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Palade G. Intracellular aspects of the process of protein synthesis. Science. 1975 Aug 1;189(4200):347–358. doi: 10.1126/science.1096303. [DOI] [PubMed] [Google Scholar]
- Palmiter R. D., Davidson J. M., Gagnon J., Rowe D. W., Bornstein P. NH2-terminal sequence of the chick proalpha1(I) chain synthesized in the reticulocyte lysate system. Evidence for a transient hydrophobic leader sequence. J Biol Chem. 1979 Mar 10;254(5):1433–1436. [PubMed] [Google Scholar]
- Palmiter R. D., Gagnon J., Ericsson L. H., Walsh K. A. Precursor of egg white lysozyme. Amino acid sequence of an NH2-terminal extension. J Biol Chem. 1977 Sep 25;252(18):6386–6393. [PubMed] [Google Scholar]
- Pelham H. R., Jackson R. J. An efficient mRNA-dependent translation system from reticulocyte lysates. Eur J Biochem. 1976 Aug 1;67(1):247–256. doi: 10.1111/j.1432-1033.1976.tb10656.x. [DOI] [PubMed] [Google Scholar]
- Rothman J. E., Lodish H. F. Synchronised transmembrane insertion and glycosylation of a nascent membrane protein. Nature. 1977 Oct 27;269(5631):775–780. doi: 10.1038/269775a0. [DOI] [PubMed] [Google Scholar]
- Rothman S. S. Protein transport by the pancreas. Science. 1975 Nov 21;190(4216):747–753. doi: 10.1126/science.1105785. [DOI] [PubMed] [Google Scholar]
- Schechter I., Burstein Y. Marked hydrophobicity of the NH2-terminal extra piece of immunoglobulin light-chain precursors: possible physiological functions of the extra piece. Proc Natl Acad Sci U S A. 1976 Sep;73(9):3273–3277. doi: 10.1073/pnas.73.9.3273. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Scheele G. A. Biosynthesis, segregation, and secretion of exportable proteins by the exocrine pancreas. Am J Physiol. 1980 Jun;238(6):G467–G477. doi: 10.1152/ajpgi.1980.238.6.G467. [DOI] [PubMed] [Google Scholar]
- Scheele G. A., Palade G. E. Studies on the guinea pig pancreas. Parallel discharge of exocrine enzyme activities. J Biol Chem. 1975 Apr 10;250(7):2660–2670. [PubMed] [Google Scholar]
- Scheele G. A., Palade G. E., Tartakoff A. M. Cell fractionation studies on the guinea pig pancreas. Redistribution of exocrine proteins during tissue homogenization. J Cell Biol. 1978 Jul;78(1):110–130. doi: 10.1083/jcb.78.1.110. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Scheele G. A. The secretory process in the pancreatic exocrine cell. Mayo Clin Proc. 1979 Jul;54(7):420–427. [PubMed] [Google Scholar]
- Scheele G. A. Two-dimensional gel analysis of soluble proteins. Charaterization of guinea pig exocrine pancreatic proteins. J Biol Chem. 1975 Jul 25;250(14):5375–5385. [PubMed] [Google Scholar]
- Scheele G., Blackburn P. Role of mammalian RNase inhibitor in cell-free protein synthesis. Proc Natl Acad Sci U S A. 1979 Oct;76(10):4898–4902. doi: 10.1073/pnas.76.10.4898. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Scheele G., Dobberstein B., Blobel G. Transfer of proteins across membranes, Biosynthesis in vitro of pretrypsinogen and trypsinogen by cell fractions of canine pancreas. Eur J Biochem. 1978 Jan 16;82(2):593–599. doi: 10.1111/j.1432-1033.1978.tb12055.x. [DOI] [PubMed] [Google Scholar]
- Sherwood L. M., Burstein Y., Schechter I. Primary structure of the NH2-terminal extra piece of the precursor to human placental lactogen. Proc Natl Acad Sci U S A. 1979 Aug;76(8):3819–3823. doi: 10.1073/pnas.76.8.3819. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shields D., Blobel G. Cell-free synthesis of fish preproinsulin, and processing by heterologous mammalian microsomal membranes. Proc Natl Acad Sci U S A. 1977 May;74(5):2059–2063. doi: 10.1073/pnas.74.5.2059. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shields D., Blobel G. Efficient cleavage and segregation of nascent presecretory proteins in a reticulocyte lysate supplemented with microsomal membranes. J Biol Chem. 1978 Jun 10;253(11):3753–3756. [PubMed] [Google Scholar]
- Showe M. K., Isobe E., Onorato L. Bacteriophage T4 prehead proteinase. II. Its cleavage from the product of gene 21 and regulation in phage-infected cells. J Mol Biol. 1976 Oct 15;107(1):55–69. doi: 10.1016/s0022-2836(76)80017-4. [DOI] [PubMed] [Google Scholar]
- Strauss A. W., Bennett C. A., Donohue A. M., Rodkey J. A., Boime I., Alberts A. W. Conversion of rat pre-proalbumin to proalbumin in vitro by ascites membranes. Demonstration by NH2-TERMINAL SEQUENCE ANALYSIS. J Biol Chem. 1978 Sep 10;253(17):6270–6274. [PubMed] [Google Scholar]
- Strauss A. W., Bennett C. D., Donohue A. M., Rodkey J. A., Alberts A. W. Rat liver pre-proalbumin: complete amino acid sequence of the pre-piece. Analysis of the direct translation product of albumin messenger RNA. J Biol Chem. 1977 Oct 10;252(19):6846–6855. [PubMed] [Google Scholar]
- Suchanek G., Kreil G., Hermodson M. A. Amino acid sequence of honeybee prepromelittin synthesized in vitro. Proc Natl Acad Sci U S A. 1978 Feb;75(2):701–704. doi: 10.1073/pnas.75.2.701. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tabe L. M., May B. K., Elliott W. H. Inhibition of the pancreatic microsome enzyme release phenomenon by inhibitors of signal peptidase activity. Biochem Biophys Res Commun. 1980 Mar 28;93(2):501–509. doi: 10.1016/0006-291x(80)91105-5. [DOI] [PubMed] [Google Scholar]
- Thibodeau S. N., Palmiter R. D., Walsh K. A. Precursor of egg white ovomucoid. Amino acid sequence of an NH2-terminal extension. J Biol Chem. 1978 Dec 25;253(24):9018–9023. [PubMed] [Google Scholar]
- Thibodeau S. N., Walsh K. A. Processing of precursor proteins by preparations of oviduct microsomes. Ann N Y Acad Sci. 1980;343:180–191. doi: 10.1111/j.1749-6632.1980.tb47251.x. [DOI] [PubMed] [Google Scholar]
- Van Lenten L., Ashwell G. Studies on the chemical and enzymatic modification of glycoproteins. A general method for the tritiation of sialic acid-containing glycoproteins. J Biol Chem. 1971 Mar 25;246(6):1889–1894. [PubMed] [Google Scholar]
- Vandenberghe A., Nelles L., De Wachter R. High-pressure liquid chromatography analysis of oligo- and monoribonucleotide mixtures, with special reference to ribosomal RNA constituents. Anal Biochem. 1980 Sep 15;107(2):369–376. doi: 10.1016/0003-2697(80)90398-x. [DOI] [PubMed] [Google Scholar]
- Wilcockson J. The differential precipition of nucleic acids and proteins from aqueous solutions by ethanol. Anal Biochem. 1975 May 26;66(1):64–68. doi: 10.1016/0003-2697(75)90724-1. [DOI] [PubMed] [Google Scholar]
- Zacharius R. M., Zell T. E., Morrison J. H., Woodlock J. J. Glycoprotein staining following electrophoresis on acrylamide gels. Anal Biochem. 1969 Jul;30(1):148–152. doi: 10.1016/0003-2697(69)90383-2. [DOI] [PubMed] [Google Scholar]